Achtung! Das Lehrangebot ist noch nicht vollständig und wird bis Semesterbeginn laufend ergänzt.
260025 PUE General Theory of Relativity and Cosmology (2023S)
Prüfungsimmanente Lehrveranstaltung
Labels
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
- Anmeldung von Mi 01.02.2023 08:00 bis Do 23.02.2023 07:00
- Abmeldung bis Fr 31.03.2023 23:59
Details
max. 25 Teilnehmer*innen
Sprache: Englisch
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
- Mittwoch 08.03. 16:30 - 18:00 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Mittwoch 15.03. 16:30 - 18:00 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Mittwoch 22.03. 16:30 - 18:00 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Mittwoch 29.03. 16:30 - 18:00 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Mittwoch 19.04. 16:30 - 18:00 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Mittwoch 26.04. 16:30 - 18:00 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Mittwoch 03.05. 16:30 - 18:00 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Mittwoch 10.05. 16:30 - 18:00 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Mittwoch 17.05. 16:30 - 18:00 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Mittwoch 24.05. 16:30 - 18:00 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Mittwoch 31.05. 16:30 - 18:00 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Mittwoch 07.06. 16:30 - 18:00 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Mittwoch 14.06. 16:30 - 18:00 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Mittwoch 21.06. 16:30 - 18:00 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Art der Leistungskontrolle und erlaubte Hilfsmittel
Examination is inherent in the course. Students may use their prepared notes.
Mindestanforderungen und Beurteilungsmaßstab
Attendance of the course "Relativity and Cosmology I" is strongly encouraged.We expect to cover 2-4 problems in each class. We encourage you to discuss homework with other students, however, the work you hand in should be your formulation and reflection. Use of previous solutions is not allowed. Homework sets must show reasoning leading to the final answers in a clear and readable fashion to obtain credit. Late homeworks are accepted only under serious circumstances.Participation in exercise classes is not obligatory but is encouraged. During classes we discuss exercises, alternative approaches, common problems, and answer your questions.Alternatively, questions and comments may be posted (and answered!) using Discussion forum on Moodle.The final score is an average of the homework grade.Grading:
Less than 50% of the maximum final score: not sufficient (5)
At least 50% but less than 65%: sufficient (4)
At least 65% but less than 80%: satisfactory (3)
At least 80% but less than 90%: good (2)
At least 90%: very good (1)The PUE is an exam-intensive course and serves the purpose of preparation for the module exam.Registration for the PUE is not mandatory.
Less than 50% of the maximum final score: not sufficient (5)
At least 50% but less than 65%: sufficient (4)
At least 65% but less than 80%: satisfactory (3)
At least 80% but less than 90%: good (2)
At least 90%: very good (1)The PUE is an exam-intensive course and serves the purpose of preparation for the module exam.Registration for the PUE is not mandatory.
Prüfungsstoff
The problems as presented in the exercise sheets.
Literatur
- Lecturer's notes
- P.T. Chruściel, Elements of general relativity, Birkhäuser Basel, 2020
- L.P. Hughston, K.P. Tod, An Introduction to General Relativity, Cambridge University Press, 1991
- R.M. Wald, General Relativity, The University of Chicago Press, 1984
- J.B. Hartle, Gravity: An Introduction to Einstein's General Relativity, Pearson, 2003
- R. d'Inverno, Introducing Einstein's Relativity, Oxford University Press, 1992
- P.T. Chruściel, Elements of general relativity, Birkhäuser Basel, 2020
- L.P. Hughston, K.P. Tod, An Introduction to General Relativity, Cambridge University Press, 1991
- R.M. Wald, General Relativity, The University of Chicago Press, 1984
- J.B. Hartle, Gravity: An Introduction to Einstein's General Relativity, Pearson, 2003
- R. d'Inverno, Introducing Einstein's Relativity, Oxford University Press, 1992
Zuordnung im Vorlesungsverzeichnis
M-CORE 7, M-VAF A 1, UF MA PHYS 01a, UF MA PHYS 01b
Letzte Änderung: Fr 24.02.2023 00:06
Contents: Discussion of problems in the context of the lecture course.
Method: Presentation of solutions by the students.