Achtung! Das Lehrangebot ist noch nicht vollständig und wird bis Semesterbeginn laufend ergänzt.
260054 VU Open Problems in quantum information theory (2022S)
Prüfungsimmanente Lehrveranstaltung
Labels
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
- Anmeldung von Di 01.02.2022 08:00 bis Do 24.02.2022 12:00
- Abmeldung bis Fr 25.03.2022 23:59
Details
max. 15 Teilnehmer*innen
Sprache: Englisch
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
- Donnerstag 10.03. 14:00 - 16:30 Seminarraum, Zi. 3354A, Boltzmanngasse 5, 3. Stk., 1090 Wien
- Donnerstag 17.03. 14:00 - 16:30 Seminarraum, Zi. 3354A, Boltzmanngasse 5, 3. Stk., 1090 Wien
- Donnerstag 24.03. 14:00 - 16:30 Seminarraum, Zi. 3354A, Boltzmanngasse 5, 3. Stk., 1090 Wien
- Donnerstag 31.03. 14:00 - 16:30 Seminarraum, Zi. 3354A, Boltzmanngasse 5, 3. Stk., 1090 Wien
- Donnerstag 07.04. 14:00 - 16:30 Seminarraum, Zi. 3354A, Boltzmanngasse 5, 3. Stk., 1090 Wien
- Donnerstag 28.04. 14:00 - 16:30 Seminarraum, Zi. 3354A, Boltzmanngasse 5, 3. Stk., 1090 Wien
- Donnerstag 05.05. 14:00 - 16:30 Seminarraum, Zi. 3354A, Boltzmanngasse 5, 3. Stk., 1090 Wien
- Donnerstag 12.05. 14:00 - 16:30 Seminarraum, Zi. 3354A, Boltzmanngasse 5, 3. Stk., 1090 Wien
- Donnerstag 19.05. 14:00 - 16:30 Seminarraum, Zi. 3354A, Boltzmanngasse 5, 3. Stk., 1090 Wien
- Donnerstag 02.06. 14:00 - 16:30 Seminarraum, Zi. 3354A, Boltzmanngasse 5, 3. Stk., 1090 Wien
- Donnerstag 09.06. 14:00 - 16:30 Seminarraum, Zi. 3354A, Boltzmanngasse 5, 3. Stk., 1090 Wien
- Donnerstag 23.06. 14:00 - 16:30 Seminarraum, Zi. 3354A, Boltzmanngasse 5, 3. Stk., 1090 Wien
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Quantum information theory exploits the unique features of quantum physics to conduct otherwise impossible communication and computational tasks. In this lecture, we present and put into context a selection of eight important open problems in this field. While reviewing each problem, the course attendants will acquire a working knowledge of quantum information theory, which will allow them to contribute to this fascinating discipline.
Art der Leistungskontrolle und erlaubte Hilfsmittel
2 homeworks (one on the marginal problem; another one about Bayesian networks), each accounting for 15% of the grade; a final exam accounts for 70%
Mindestanforderungen und Beurteilungsmaßstab
Prüfungsstoff
Examination topics:
1. Time translation of uncontrolled quantum systems.
2. The landscape of physical theories and reasonable alternatives to quantum mechanics.
3. Quantum entanglement in many-body systems.
4. The quantum marginal problem.
5. Quantum and classical Bayesian networks
6. The oracle model of quantum computation.
7. Noisy Intermediate-Scale Quantum devices.
1. Time translation of uncontrolled quantum systems.
2. The landscape of physical theories and reasonable alternatives to quantum mechanics.
3. Quantum entanglement in many-body systems.
4. The quantum marginal problem.
5. Quantum and classical Bayesian networks
6. The oracle model of quantum computation.
7. Noisy Intermediate-Scale Quantum devices.
Literatur
D. Trillo, B. Dive and M. Navascués, Translating Uncontrolled Systems in Time, Quantum 4, 374 (2020).
J. Barrett, Information processing in generalized probabilistic theories, arXiv:quant-ph/0508211.
M. Navascués, F. Baccari and A. Acín, Entanglement marginal problems, Quantum 5, 589 (2021).
Nikolai Miklin, Alastair A. Abbott, Cyril Branciard, Rafael Chaves, Costantino Budroni, The entropic approach to causal correlations, New J. Phys. 19, 113041 (2017).
Costantino Budroni, Nikolai Miklin, Rafael Chaves, Indistinguishability of causal relations from limited marginals, Phys. Rev. A 94, 042127 (2016).
Mirjam Weilenmann and Roger Colbeck, Analysing causal structures in generalised probabilistic theories, Quantum 4, 236 (2020).
Andris Ambainis, Quantum search algorithms, ACM SIGACT NewsVolume 35 Issue 2, pp 22–35 (2004).
K. Bharti et al., Noisy intermediate-scale quantum (NISQ) algorithms, arXiv:2101.08448v2.
J. Barrett, Information processing in generalized probabilistic theories, arXiv:quant-ph/0508211.
M. Navascués, F. Baccari and A. Acín, Entanglement marginal problems, Quantum 5, 589 (2021).
Nikolai Miklin, Alastair A. Abbott, Cyril Branciard, Rafael Chaves, Costantino Budroni, The entropic approach to causal correlations, New J. Phys. 19, 113041 (2017).
Costantino Budroni, Nikolai Miklin, Rafael Chaves, Indistinguishability of causal relations from limited marginals, Phys. Rev. A 94, 042127 (2016).
Mirjam Weilenmann and Roger Colbeck, Analysing causal structures in generalised probabilistic theories, Quantum 4, 236 (2020).
Andris Ambainis, Quantum search algorithms, ACM SIGACT NewsVolume 35 Issue 2, pp 22–35 (2004).
K. Bharti et al., Noisy intermediate-scale quantum (NISQ) algorithms, arXiv:2101.08448v2.
Zuordnung im Vorlesungsverzeichnis
M-VAF A 2, M-VAF B
Letzte Änderung: Do 03.03.2022 15:29