Achtung! Das Lehrangebot ist noch nicht vollständig und wird bis Semesterbeginn laufend ergänzt.
260061 PUE Einführung in die Relativitätstheorie (2024W)
Prüfungsimmanente Lehrveranstaltung
Labels
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
- Anmeldung von Do 05.09.2024 00:00 bis Mo 23.09.2024 23:59
- Abmeldung bis Fr 18.10.2024 23:59
Details
max. 25 Teilnehmer*innen
Sprache: Englisch
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
Wichtig: Der erste angeführte Termin am 01.10.2024 findet nicht statt. Der erste Übungstermin ist der 08.10.2024.
- Dienstag 01.10. 15:45 - 17:15 Ernst-Mach-Hörsaal, Boltzmanngasse 5, 2. Stk., 1090 Wien
- Dienstag 08.10. 15:45 - 17:15 Ernst-Mach-Hörsaal, Boltzmanngasse 5, 2. Stk., 1090 Wien
- Dienstag 15.10. 15:45 - 17:15 Ernst-Mach-Hörsaal, Boltzmanngasse 5, 2. Stk., 1090 Wien
- Dienstag 22.10. 15:45 - 17:15 Ernst-Mach-Hörsaal, Boltzmanngasse 5, 2. Stk., 1090 Wien
- Dienstag 29.10. 15:45 - 17:15 Ernst-Mach-Hörsaal, Boltzmanngasse 5, 2. Stk., 1090 Wien
- Dienstag 05.11. 15:45 - 17:15 Ernst-Mach-Hörsaal, Boltzmanngasse 5, 2. Stk., 1090 Wien
- Dienstag 12.11. 15:45 - 17:15 Ernst-Mach-Hörsaal, Boltzmanngasse 5, 2. Stk., 1090 Wien
- Dienstag 19.11. 15:45 - 17:15 Ernst-Mach-Hörsaal, Boltzmanngasse 5, 2. Stk., 1090 Wien
- Dienstag 26.11. 15:45 - 17:15 Ernst-Mach-Hörsaal, Boltzmanngasse 5, 2. Stk., 1090 Wien
- Dienstag 03.12. 15:45 - 17:15 Ernst-Mach-Hörsaal, Boltzmanngasse 5, 2. Stk., 1090 Wien
- Dienstag 10.12. 15:45 - 17:15 Ernst-Mach-Hörsaal, Boltzmanngasse 5, 2. Stk., 1090 Wien
- Dienstag 17.12. 15:45 - 17:15 Ernst-Mach-Hörsaal, Boltzmanngasse 5, 2. Stk., 1090 Wien
- Dienstag 07.01. 15:45 - 17:15 Ernst-Mach-Hörsaal, Boltzmanngasse 5, 2. Stk., 1090 Wien
- Dienstag 14.01. 15:45 - 17:15 Ernst-Mach-Hörsaal, Boltzmanngasse 5, 2. Stk., 1090 Wien
- N Dienstag 21.01. 15:45 - 17:15 Ernst-Mach-Hörsaal, Boltzmanngasse 5, 2. Stk., 1090 Wien
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
In this exercise class students will discuss various topics from special relativity as well as introductory topics in general relativity. The covered material will be complementary to the lecture. The goal of this course is for students to develop a sense of how to solve elementary mathematical problems in a relativistic setting. This is achieved through classic exercise classes. Students prepare solutions to problems outside class and present said solutions on the blackboard in a discussion-type setting in class.
Art der Leistungskontrolle und erlaubte Hilfsmittel
Students get a set of exercises a week before class. They are expected to indicate which problems they solved before class. In class, they may be asked to present a problem they solved. In that case they are allowed to bring notes to the blackboard.The PUE is a course with continuous assessment and serves to prepare for the module examination. Registration for the PUE is not mandatory, but is recommended.
Note: Participation is binding when you register for the PUE.
You can deregister from this course yourself until a deadline provided by the SCC.
Without exception, all students registered after this deadline can take part in the PUE and will be graded according to the assessment criteria of the PUE.
The grade of the PUE is NOT included in the grade of the module examination.
The proof of performance required for the module (VO + PUE) is provided by completing the module examination
Note: Participation is binding when you register for the PUE.
You can deregister from this course yourself until a deadline provided by the SCC.
Without exception, all students registered after this deadline can take part in the PUE and will be graded according to the assessment criteria of the PUE.
The grade of the PUE is NOT included in the grade of the module examination.
The proof of performance required for the module (VO + PUE) is provided by completing the module examination
Mindestanforderungen und Beurteilungsmaßstab
Grading is primarily dependent on the following:- Students are asked before class to indicate the problems that they solved. The total amount of solved problems determines the grade in the following way (where x is the percentage of solved problems)x<50: 5
50<=x<62.5: 4
62.5<=x<75: 3
75<=x<87.5: 2
87.5<=x: 1-) Depending on the number of students a minimum of 2-3 blackboard presentations are required (!) to pass the course (get a grade that is not 5).Additional info:-) A presentation is only valid, if the presenting student is sufficiently prepared. That means that the student displays a certain knowledge of the posed question rather than having every minute detail exactly right.-) Voluntary presentations are highly encouraged!-) Presenting is supposed to be an interesting discussion including the other participants, not an rigorous examination.-) Most of all, the focus of this class is interaction with the material. Therefore, additional presentations are highly encouraged and improve the final grade.
50<=x<62.5: 4
62.5<=x<75: 3
75<=x<87.5: 2
87.5<=x: 1-) Depending on the number of students a minimum of 2-3 blackboard presentations are required (!) to pass the course (get a grade that is not 5).Additional info:-) A presentation is only valid, if the presenting student is sufficiently prepared. That means that the student displays a certain knowledge of the posed question rather than having every minute detail exactly right.-) Voluntary presentations are highly encouraged!-) Presenting is supposed to be an interesting discussion including the other participants, not an rigorous examination.-) Most of all, the focus of this class is interaction with the material. Therefore, additional presentations are highly encouraged and improve the final grade.
Prüfungsstoff
The 'exam questions' from http://gravity.univie.ac.at/studies/relativitaetstheorie-und-kosmologie-i/ give a good overview of the material covered in the exercises.
Literatur
"Skriptum von J. M. Heinzle aus dem Wintersemester 2009/10", "Vorlesungsbehelf von Prof. Beig aus dem Wintersemester 2008/9", "Skriptum von Prof. Rumpf aus dem Wintersemester 2015/16". Special Relativity von N.M.J. Woodhouse
Spezielle und allgemeine Relativitätstheorie für Bachelorstudenten by R. Meinel.
see also http://gravity.univie.ac.at/studies/relativitaetstheorie-und-kosmologie-i/
Spezielle und allgemeine Relativitätstheorie für Bachelorstudenten by R. Meinel.
see also http://gravity.univie.ac.at/studies/relativitaetstheorie-und-kosmologie-i/
Zuordnung im Vorlesungsverzeichnis
WPF 7, UF MA PHYS 01a, UF MA PHYS 01b
Letzte Änderung: Mi 25.09.2024 12:26