Achtung! Das Lehrangebot ist noch nicht vollständig und wird bis Semesterbeginn laufend ergänzt.
260070 VU Foundations of mesoscopic engines - from classical to quantum (2023W)
Prüfungsimmanente Lehrveranstaltung
Labels
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
- Anmeldung von Mo 04.09.2023 08:00 bis Mo 25.09.2023 07:00
- Abmeldung bis Fr 20.10.2023 23:59
Details
max. 15 Teilnehmer*innen
Sprache: Englisch
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
Reminder: the time for the Tuesday lecture went from 10:00 to 10:30!
- Dienstag 03.10. 10:30 - 11:15 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Donnerstag 05.10. 10:00 - 11:30 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Dienstag 10.10. 10:30 - 11:15 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Donnerstag 12.10. 10:00 - 11:30 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Dienstag 17.10. 10:30 - 11:15 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Donnerstag 19.10. 10:00 - 11:30 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Dienstag 24.10. 10:30 - 11:15 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Dienstag 31.10. 10:30 - 11:15 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Dienstag 07.11. 10:30 - 11:15 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Donnerstag 09.11. 10:00 - 11:30 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Dienstag 14.11. 10:30 - 11:15 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Donnerstag 16.11. 10:00 - 11:30 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Dienstag 21.11. 10:30 - 11:15 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Donnerstag 23.11. 10:00 - 11:30 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Dienstag 28.11. 10:30 - 11:15 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Donnerstag 30.11. 10:00 - 11:30 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Dienstag 05.12. 10:30 - 11:15 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Donnerstag 07.12. 10:00 - 11:30 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Dienstag 12.12. 10:30 - 11:15 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Donnerstag 14.12. 10:00 - 11:30 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Dienstag 09.01. 10:30 - 11:15 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Donnerstag 11.01. 10:00 - 11:30 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Dienstag 16.01. 10:30 - 11:15 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Donnerstag 18.01. 10:00 - 11:30 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Dienstag 23.01. 10:30 - 11:15 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Donnerstag 25.01. 10:00 - 11:30 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Art der Leistungskontrolle und erlaubte Hilfsmittel
Equal weighing between all grades (at least 2) acquired throughout the course.
This may be1) Exercise attempts handed in (optional)
2) oral exam at the end (compulsory)
3) presentation(s) of exercises or article summaries (optional)
This may be1) Exercise attempts handed in (optional)
2) oral exam at the end (compulsory)
3) presentation(s) of exercises or article summaries (optional)
Mindestanforderungen und Beurteilungsmaßstab
There are two requirements to pass the course
1) With positive evaluation:
One presentation of an exercise sheet solution (on experimental data analysis)
OR presentation of a brief scientific article summary
OR handing in all the exercises (reasonable attempt)
2) Pass the oral exam at the end of the courseOptional grading for handing in exercises:
(1) 89% - 100%
(2) 76% - 88%
(3) 63% - 75%
(4) 50% - 62%
1) With positive evaluation:
One presentation of an exercise sheet solution (on experimental data analysis)
OR presentation of a brief scientific article summary
OR handing in all the exercises (reasonable attempt)
2) Pass the oral exam at the end of the courseOptional grading for handing in exercises:
(1) 89% - 100%
(2) 76% - 88%
(3) 63% - 75%
(4) 50% - 62%
Prüfungsstoff
OUTLINE OF THE COURSEThermodynamics at the macroscopic scale
Principles of stochastic thermodynamics
Fluctuation theorems
Experiments on classical stochastic engines
From stochastic to quantum thermodynamics
Quantum entropy production and measurement of work
Quantum heat engines
Work extraction and engines with batteries
Thermodynamics of computationExpect exercise sheets on the various topics, with, for example, general versions of demonstrations given in class, or numerical exercise, or easy simulations of differential equations.
In the oral exam, expect to be asked about a choice topic that particularly interested you, and then a couple more general questions on the topic of the course.
Principles of stochastic thermodynamics
Fluctuation theorems
Experiments on classical stochastic engines
From stochastic to quantum thermodynamics
Quantum entropy production and measurement of work
Quantum heat engines
Work extraction and engines with batteries
Thermodynamics of computationExpect exercise sheets on the various topics, with, for example, general versions of demonstrations given in class, or numerical exercise, or easy simulations of differential equations.
In the oral exam, expect to be asked about a choice topic that particularly interested you, and then a couple more general questions on the topic of the course.
Literatur
Deffner, Campbell, "Quantum Thermodynamics: An introduction to the thermodynamics of quantum information" - from: https://iopscience.iop.org/book/978-1-64327-658-8
or: https://arxiv.org/abs/1907.01596-Irreversible entropy production, from quantum to classical: arXiv:2009.07668Papers and additional online material will be provided during the course.
or: https://arxiv.org/abs/1907.01596-Irreversible entropy production, from quantum to classical: arXiv:2009.07668Papers and additional online material will be provided during the course.
Zuordnung im Vorlesungsverzeichnis
M-VAF A 2, M-VAF B, UF MA PHYS 01a, UF MA PHYS 01b
Letzte Änderung: Di 24.10.2023 09:27
On the mesoscopic level, thermodynamic engines need to operate in a completely different regime than their well-known macroscopic counterparts. In fact, when the scale goes down, uncontrollable noise becomes of the same magnitude of the controlled forces acting on the system. Investigating these new concepts is part of the broader field of stochastic and quantum thermodynamics.The goal of this course is to provide the underlying principles of this field. It will enable you to understand some of its open questions and current literature. The course will put an emphasis on connecting the theoretical concepts with state-of-the-art experiments.OUTLINE OF THE COURSEThermodynamics at the macroscopic scale
Principles of stochastic thermodynamics
Fluctuation theorems
Experiments on classical stochastic engines
From stochastic to quantum thermodynamics
Quantum entropy production and measurement of work
Quantum heat engines
Work extraction and engines with batteries
Thermodynamics of computationMETHODSThe course follows parts of the provided textbook (see Reading list) with significant additions from online lectures and scientific articles that are provided in the course, that will enable you to prepare and revisit the lectures.
The major part of the content of the course will be presented by the lecturer partially in a flipped classroom style, partially as classic lecture (blackboard/slides) with ample time for questions and discussions in either case.
Home exercises will enable you to test your understanding and actively work with the new concepts. Literature assignments relate the learned concepts to the current literature and our joint discussions are also meant to train your skills in efficiently processing their content.
The modality of the course will be in person, with flexibility for online streaming if necessary.Dear course participants,Artificial intelligence (AI, such as "ChatGPT") can be a helpful tool to complement the creative process and independent thinking. In this course, I want to encourage you to keep a critical approach in this regard. Thus,
1. I will add on Moodle material on AI related copyright on text and images and usage rules, please read them!
2. When you use AI, please tell me. We want to know how it supported your creative and logical process.
3. Question the gained information thoroughly
These rules apply throughout the course, including all additional project work related to the course."https://wiki.univie.ac.at/display/TEM/Legal+issues+regarding+the+use+of+AI+tools