Achtung! Das Lehrangebot ist noch nicht vollständig und wird bis Semesterbeginn laufend ergänzt.
270049 SE Einführung in die Didaktik der Chemie (2022S)
Prüfungsimmanente Lehrveranstaltung
Labels
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
- Anmeldung von Di 01.02.2022 08:00 bis Do 24.02.2022 23:59
- Abmeldung bis Do 24.02.2022 23:59
Details
max. 25 Teilnehmer*innen
Sprache: Deutsch
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
Teil 1 (Prof. Anton): Mittwoch, 10.30-12 Uhr, Start 2.3. im SR3 (Währingerstr. 42)
Teil 2 (Univ.-Prof. Dr. Anja Lembens): Mittwochs, 10:15-11:45, ab 27.04. im Seminarraum der AECCs, Porzellangasse 4, Stiege 2, 3. Stock, Raum 311
- Mittwoch 02.03. 10:30 - 12:00 Seminarraum 3 Organische Chemie 1OG Boltzmanngasse 1
- Mittwoch 09.03. 10:30 - 12:00 Seminarraum 3 Organische Chemie 1OG Boltzmanngasse 1
- Mittwoch 16.03. 10:30 - 12:00 Seminarraum 3 Organische Chemie 1OG Boltzmanngasse 1
- Mittwoch 23.03. 10:30 - 12:00 Seminarraum 3 Organische Chemie 1OG Boltzmanngasse 1
- Mittwoch 30.03. 10:30 - 12:00 Seminarraum 3 Organische Chemie 1OG Boltzmanngasse 1
- Mittwoch 06.04. 10:30 - 12:00 Seminarraum 3 Organische Chemie 1OG Boltzmanngasse 1
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Art der Leistungskontrolle und erlaubte Hilfsmittel
Die Beurteilung der Lehrveranstaltung setzt sich aus folgenden Teilen zusammen:
1.) Regelmäßige Teilnahme und aktive Mitarbeit (20%)
2.) Kurzreferat zu einem ausgewählten unterrichtsrelevanten Thema (15%)
3.) Selbstreflexion zu ausgewählten Themen des Seminars (25%)
4.) Unterrichtsreflexion anhand von Vignetten (15%)
5.) Planung und Präsentation einer Unterrichtseinheit inkl. Material (25%)
1.) Regelmäßige Teilnahme und aktive Mitarbeit (20%)
2.) Kurzreferat zu einem ausgewählten unterrichtsrelevanten Thema (15%)
3.) Selbstreflexion zu ausgewählten Themen des Seminars (25%)
4.) Unterrichtsreflexion anhand von Vignetten (15%)
5.) Planung und Präsentation einer Unterrichtseinheit inkl. Material (25%)
Mindestanforderungen und Beurteilungsmaßstab
Voraussetzung für eine positive Bewertung sind eine regelmäßige und aktive Teilnahme (maximal zwei Termine dürfen entschuldigt versäumt werden) und die fristgerechte Einreichung aller Teilleistungen.
Die Lehrveranstaltung kann nur dann positiv abgeschlossen werden, wenn Leistungsnachweis 5 positiv bewertet wurde.
Die Lehrveranstaltung kann nur dann positiv abgeschlossen werden, wenn Leistungsnachweis 5 positiv bewertet wurde.
Prüfungsstoff
Seminar mit aktiven Anteilen der Studierenden
Literatur
Anton, M. A. (2019). Chemieunterricht verstehen. Zur Didaktik und Mathetik der Chemie. Beau Bassin/Mauritius: Lehrbuchverlag.
Anton, M. A. (2008) Kompendium Chemiedidaktik. Bad Heilbrunn: Klinkhardt (beim Autor für 5 € zu erhalten)
Barke, H.-D. (2006). Chemiedidaktik – Diagnose und Korrektur von Schülervorstellungen. Berlin: Springer
Beck, H. (2020). Das neue Lernen heißt Verstehen. Berlin: Ullstein
El-Mafaalani, A. (2020). Mythos Bildung – Die ungerechte Gesellschaft, ihr Bildungssystem und seine Zukunft. Köln: Kiepenheuer & Witsch
Fischer, Chr. et al. (Hrsg.) (2017). Potenzialentwicklung. Begabungsförderung. Bildung der Vielfalt. Münster: Waxmann
Forster, J. K. (2014) Gedächtnis und Gehirn. Stuttgart: Reclam
Heering, A. (2013). Jule und der Schrecken der Chemie. Weinheim: Wiley-VCH
Korte, M. (2017). Wir sind Gedächtnis – Wie unsere Erinnerungen bestimmen, wer wir sind. München: dva
Lo, Mun Ling (2015). Lernen durch Variation – Implementierung der Variationstheorie in Schule und Bildungsforschung. Münster: Waxmann
Merzyn, G. (2017). Merkmale guter Lehrer in Physik, Chemie, Biologie. PhyDid 16 (2017) 1, 67-80
Reiners, Chr. S. (2017). Chemie vermitteln - Fachdidaktische Grundlagen und Implikationen (S. 148-177). Berlin: Springer
Roth, G. (2017). Was das Gehirn zum Lernen braucht – Neurokognitive Tipps für die Schule. BiuZ 47 (2017) 5, 326-331
Sommer, K.; Wambach-Laicher, J.; Pfeifer, P. (Hrsg.) (2018). Konkrete Fachdidaktik Chemie – Grundlagen für das Lernen und Lehren im Chemieunterricht. Seelze: Aulis
Spitzer, M.; Herschkowitz, N. (2019). Wie Kinder denken lernen – Die kognitive Entwicklung vom 1. bis 12. Lebensjahr. München: mvg
Terhart, E. (2009). Didaktik: Eine Einführung. Stuttgart: ReclamBarke, H.-D. (2015). Brönsted-Säuren und Brönsted-Basen. Chemie & Schule, 30 (1).
Carr, M. (1984). Model confusion in chemistry. Research in Science Education, 14 (1), 97–103.
Duit, R. (2010a). Didaktische Rekonstruktion. Piko-Brief (3), 1–5.
Duit, R. (2010b). Schülervorstellungen und Lernen von Physik. Piko-Brief (1), 1–5.
Garnett, P. J., Garnett, P. J. & Hackling, M. W. (1995). Students alternative conceptions in chemistry: A review of research and implications for teaching and learning. Studies in Science Education, 25, 69–95.
Hopf, M., Lembens, A. & Kapelari, S. (Hg.). (2017). Kompetenz. Plus Lucis.
Johnstone, A. (1991). Why is science difficult to learn? Journal of Computer Assisted Learning, 7, 75–83.
Johnstone, A. (2000). Teaching of Chemistry - logical or psychological? Chemistry Education Research and Practice, 1, 9–15.
Kind, V. (2004). Beyond Appearances: Students' Misconceptions About Basic Chemical Ideas.
Möller, K. (2019). Lernen von Naturwissenschaften heißt: Vorstellungen verändern. In P. Labudde & S. Metzger (Hg.), utb Pädagogik. Fachdidaktik Naturwissenschaft: 1. - 9. Schuljahr (3. Aufl., S. 59–70).
Wilhelm, M. (2016). Ein Einstieg, der den Unterrichtsverlauf trägt. Profil, 16, 34–35.
Anton, M. A. (2008) Kompendium Chemiedidaktik. Bad Heilbrunn: Klinkhardt (beim Autor für 5 € zu erhalten)
Barke, H.-D. (2006). Chemiedidaktik – Diagnose und Korrektur von Schülervorstellungen. Berlin: Springer
Beck, H. (2020). Das neue Lernen heißt Verstehen. Berlin: Ullstein
El-Mafaalani, A. (2020). Mythos Bildung – Die ungerechte Gesellschaft, ihr Bildungssystem und seine Zukunft. Köln: Kiepenheuer & Witsch
Fischer, Chr. et al. (Hrsg.) (2017). Potenzialentwicklung. Begabungsförderung. Bildung der Vielfalt. Münster: Waxmann
Forster, J. K. (2014) Gedächtnis und Gehirn. Stuttgart: Reclam
Heering, A. (2013). Jule und der Schrecken der Chemie. Weinheim: Wiley-VCH
Korte, M. (2017). Wir sind Gedächtnis – Wie unsere Erinnerungen bestimmen, wer wir sind. München: dva
Lo, Mun Ling (2015). Lernen durch Variation – Implementierung der Variationstheorie in Schule und Bildungsforschung. Münster: Waxmann
Merzyn, G. (2017). Merkmale guter Lehrer in Physik, Chemie, Biologie. PhyDid 16 (2017) 1, 67-80
Reiners, Chr. S. (2017). Chemie vermitteln - Fachdidaktische Grundlagen und Implikationen (S. 148-177). Berlin: Springer
Roth, G. (2017). Was das Gehirn zum Lernen braucht – Neurokognitive Tipps für die Schule. BiuZ 47 (2017) 5, 326-331
Sommer, K.; Wambach-Laicher, J.; Pfeifer, P. (Hrsg.) (2018). Konkrete Fachdidaktik Chemie – Grundlagen für das Lernen und Lehren im Chemieunterricht. Seelze: Aulis
Spitzer, M.; Herschkowitz, N. (2019). Wie Kinder denken lernen – Die kognitive Entwicklung vom 1. bis 12. Lebensjahr. München: mvg
Terhart, E. (2009). Didaktik: Eine Einführung. Stuttgart: ReclamBarke, H.-D. (2015). Brönsted-Säuren und Brönsted-Basen. Chemie & Schule, 30 (1).
Carr, M. (1984). Model confusion in chemistry. Research in Science Education, 14 (1), 97–103.
Duit, R. (2010a). Didaktische Rekonstruktion. Piko-Brief (3), 1–5.
Duit, R. (2010b). Schülervorstellungen und Lernen von Physik. Piko-Brief (1), 1–5.
Garnett, P. J., Garnett, P. J. & Hackling, M. W. (1995). Students alternative conceptions in chemistry: A review of research and implications for teaching and learning. Studies in Science Education, 25, 69–95.
Hopf, M., Lembens, A. & Kapelari, S. (Hg.). (2017). Kompetenz. Plus Lucis.
Johnstone, A. (1991). Why is science difficult to learn? Journal of Computer Assisted Learning, 7, 75–83.
Johnstone, A. (2000). Teaching of Chemistry - logical or psychological? Chemistry Education Research and Practice, 1, 9–15.
Kind, V. (2004). Beyond Appearances: Students' Misconceptions About Basic Chemical Ideas.
Möller, K. (2019). Lernen von Naturwissenschaften heißt: Vorstellungen verändern. In P. Labudde & S. Metzger (Hg.), utb Pädagogik. Fachdidaktik Naturwissenschaft: 1. - 9. Schuljahr (3. Aufl., S. 59–70).
Wilhelm, M. (2016). Ein Einstieg, der den Unterrichtsverlauf trägt. Profil, 16, 34–35.
Zuordnung im Vorlesungsverzeichnis
UF CH 13
Letzte Änderung: Mi 22.06.2022 12:09
Die Studierenden erhalten Einblick in das Wesen und die Bedeutung der Chemiedidaktik. Für die Unterrichtsarbeit sollen methodische Vielfalt und Begründbarkeit methodischer Entscheidungen sichergestellt werden.Inhalte:
Wichtige Begriffe der Chemiedidaktik werden modelliert, Forschungsergebnisse aus Pädagogischer Psychologie, Neurophysiologie und Hirnforschung werden mit denen der Lehrlehrwissenschaft Chemiedidaktik in Zusammenhang gebracht. Traditionen und Moden werden hinterfragt. Optionen für die nötige Weiterentwicklung der Unterrichtsqualität dieses faszinierenden Fachs werden offengelegt.Methoden:
Die Inhalte der Lehrveranstaltungen werden durch Vorträge, (falls möglich) experimentelle Präsentationen und Übungen, Diskussionen, Kurzreferate und Gruppenarbeiten aufbereitet. Der kritische Blick in Forschungsliteratur und die Verwendung einer Lernplattform werden ebenso integriert wie digitalisierte Lehr- und Lernhilfen.Allen chemiedidaktischen Lehrveranstaltungen liegen sichere Chemiekenntnisse zugrunde!