Achtung! Das Lehrangebot ist noch nicht vollständig und wird bis Semesterbeginn laufend ergänzt.
280353 UE PM-MDyn Übungen zu Dynamik mesoskaliger Prozesse (PI) (2018W)
Prüfungsimmanente Lehrveranstaltung
Labels
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
- Anmeldung von Mi 12.09.2018 10:00 bis Mi 26.09.2018 23:59
- Anmeldung von Mo 01.10.2018 10:00 bis Mi 17.10.2018 23:59
- Abmeldung bis Mi 17.10.2018 23:59
Details
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Art der Leistungskontrolle und erlaubte Hilfsmittel
Note
< 50 points 5
from 50 points to 62 points 4
from 63 points to 75 points 3
from 76 points to 88 points 2
from 89 points to 100 points 1
< 50 points 5
from 50 points to 62 points 4
from 63 points to 75 points 3
from 76 points to 88 points 2
from 89 points to 100 points 1
Mindestanforderungen und Beurteilungsmaßstab
Active participation in class, discussion 5
Homework assignments 10
Written proposals, presentations and experimental numerical work 15
Midterm Exam 30
Final Exam 40
Total 100
Homework assignments 10
Written proposals, presentations and experimental numerical work 15
Midterm Exam 30
Final Exam 40
Total 100
Prüfungsstoff
Course content:
Definition of the mesoscale (Energy cascade, Scale interactions, Scale analysis)
Basic equations and methods (Laboratory exercises-method of linearization, numerical techniques, numerical forecast of some mesoscale phenomena, numerical efficienc, stability)
Deep convection (clous model tutorial, laboratory exercises, numerical simulation of convective studies, simulation of supercell storm over Viena, practical work in recognition various convective types).
Mesoscale instabilities (Exercises for various types of mesoscale instability, Numerical experimentation and research analysis)
Orographic mesoscale phenomena and orographic precipitation (Detail examination of each selected orographic mesoscale phenomena based on physical parameters and dimensionless numbers, numerical and research work)
Definition of the mesoscale (Energy cascade, Scale interactions, Scale analysis)
Basic equations and methods (Laboratory exercises-method of linearization, numerical techniques, numerical forecast of some mesoscale phenomena, numerical efficienc, stability)
Deep convection (clous model tutorial, laboratory exercises, numerical simulation of convective studies, simulation of supercell storm over Viena, practical work in recognition various convective types).
Mesoscale instabilities (Exercises for various types of mesoscale instability, Numerical experimentation and research analysis)
Orographic mesoscale phenomena and orographic precipitation (Detail examination of each selected orographic mesoscale phenomena based on physical parameters and dimensionless numbers, numerical and research work)
Literatur
Lin, Y.-L 2007. Mesoscale Dynamics, Cambridge University Press, pp. 630.
Paul M. Markowski and Yvette P. Richardson, Mesoscale Meteorology in Midlatitudes
Wiley-Blackwell, 2010.
M. Hantel (2013): Lehrbuch Einführung Theoretische Meteorologie, Springer-Spektrum, Springer-Verlag Berlin/Heidelberg, 430 pp.
Holton, J.R. 2004: An Introduction to Dynamic Meteorology, Elsevier Academic Press. 4th Edition, 531 pp.
Additional
Warner, T.T., 2011: Numerical Weather and Climate Prediction, Cambridge University Press pp. 550.
Paul M. Markowski and Yvette P. Richardson, Mesoscale Meteorology in Midlatitudes
Wiley-Blackwell, 2010.
M. Hantel (2013): Lehrbuch Einführung Theoretische Meteorologie, Springer-Spektrum, Springer-Verlag Berlin/Heidelberg, 430 pp.
Holton, J.R. 2004: An Introduction to Dynamic Meteorology, Elsevier Academic Press. 4th Edition, 531 pp.
Additional
Warner, T.T., 2011: Numerical Weather and Climate Prediction, Cambridge University Press pp. 550.
Zuordnung im Vorlesungsverzeichnis
Letzte Änderung: Do 27.09.2018 11:08
Course description:
The master course on Exercises on the Dynamics of Mesoscale Processes is just an extended hand of the general Mesoscale Dynamics concept and adjust for students to upgrade their knowledge and understanding mesoscale dynamics by numerous practical solutions, interactive discussion, homework and exams. It explains the basic physical concept on dynamics of mesoscale atmospheric processes. It starts with the main definition of Mesometeorology, scale analysis of different atmospheric processes and interactions among them. Then the fundamental principles of modeling mesoscale processes and construction of mesoscale atmospheric model, the basic equations and the appropriate numerical methods for their solution and linearization are explained in detail. The next important topic is a deep convection, the main physical processes, convective cloud model description and storm classification. The mesoscale instabilities, orographic phenomena induced by air flow
over mountain and orographic precipitation are also part of this master course.Goals (competences):
o To achieve advanced knowledge and understanding a different Mesoscale phenomena, to perform scale analysis of the horizontal and vertical processes and to be able to prepare the summarize with the main physical description of the processes in content of their dynamics.
o Develop capability to apply this upgraded knowledge in solving a different analytical and practical numerical solutions and linearization of equations, numerical experimentation and numerical simulations of a different mesoscale processes including convection.
o Strengthen the capability and motivation for moving forward in developing the basic framework of the mesoscale model.
o Capacity building for further development and improvement with own idea and innovative solutions;
o Better preparedness for scientific presentation, talks, review and discussions
o Improve the scientific and research potential, as good initial input for the further PhD career.Teaching methods:
Lectures supported by slide presentation, interactive lectures, trainings (using laboratory equipment and software packages), team work, case studies simulations, discussion, individual practical presentation (homework) , seminar paper, e-learning.Teaching activities:
Lectures
Training (laboratory sessions, problem solving-numerical experiments), and team work
Project work
Self study
Home work