290002 PS Spatial Data Science (2023W)
Prüfungsimmanente Lehrveranstaltung
Labels
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
- Anmeldung von Mo 04.09.2023 09:00 bis Mo 18.09.2023 09:00
- Abmeldung bis Di 31.10.2023 23:59
Details
max. 30 Teilnehmer*innen
Sprache: Englisch
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
- Montag 06.11. 12:30 - 14:30 GIS-Labor Geo NIG 1.OG
- Montag 13.11. 12:30 - 14:30 GIS-Labor Geo NIG 1.OG
- Montag 20.11. 12:30 - 14:30 GIS-Labor Geo NIG 1.OG
- Montag 27.11. 12:30 - 14:30 GIS-Labor Geo NIG 1.OG
- Montag 04.12. 12:30 - 14:30 GIS-Labor Geo NIG 1.OG
- Montag 11.12. 12:30 - 14:30 GIS-Labor Geo NIG 1.OG
- Montag 08.01. 12:30 - 14:30 GIS-Labor Geo NIG 1.OG
- Montag 15.01. 12:30 - 14:30 GIS-Labor Geo NIG 1.OG
- Montag 22.01. 12:30 - 14:30 GIS-Labor Geo NIG 1.OG
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
This course will introduce students to Spatial Data Science as a "fourth paradigm" of science. The course will outline all stages from the initial conceptualization and representation of data to their creation, entry, cleaning, and analysis, e.g., using clustering or classification. We will discuss classics such as DBSCAN, develop a first understanding of issues of computational complexity, and also cover FAIR principles (findability, accessibility, interoperability, and reusability) in (research) data management.The course will also introduce foundational literature about different kinds of regions in geography and then introduce a novel, data-synthesis-based method to replicate the findings of these classical papers in order to show applications of Spatial Data Science.Topics will include introductory materials in knowledge representation, data engineering, geographic information retrieval, clustering, classification, and so on. We will also touch on several application areas, such as social sensing and place recommendations.Students will then develop their own experiments (as a series of assignments) and present them during the class.
Art der Leistungskontrolle und erlaubte Hilfsmittel
Active participation, assignments, mid-term exam, final presentation
Mindestanforderungen und Beurteilungsmaßstab
Interest in the representation and analysis of data. We are also happy to invite students outside of geoinformation to participate.
Prüfungsstoff
immanent examination character:• Active participation (10%)
• Assignments (two slidesets) (30%)
• (~ Mid-term) exam (30%)
• Final Presentation/ Report (30%)A positive conclusion is given from an overall rating of 51%.
• Assignments (two slidesets) (30%)
• (~ Mid-term) exam (30%)
• Final Presentation/ Report (30%)A positive conclusion is given from an overall rating of 51%.
Literatur
will be announced during the course
Zuordnung im Vorlesungsverzeichnis
(MK2-c-PI) (MK1-W2-PI)
Letzte Änderung: So 05.11.2023 15:28