Achtung! Das Lehrangebot ist noch nicht vollständig und wird bis Semesterbeginn laufend ergänzt.
290002 PS Spatial Data Science (2024W)
Prüfungsimmanente Lehrveranstaltung
Labels
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
- Anmeldung von Mo 02.09.2024 08:00 bis Mo 16.09.2024 12:00
- Anmeldung von Do 19.09.2024 08:00 bis Fr 27.09.2024 12:00
- Abmeldung bis Do 31.10.2024 23:59
Details
max. 35 Teilnehmer*innen
Sprache: Englisch
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
- Montag 04.11. 12:30 - 14:30 GIS-Labor Geo NIG 1.OG
- Montag 11.11. 12:30 - 14:30 GIS-Labor Geo NIG 1.OG
- Montag 18.11. 12:30 - 14:30 GIS-Labor Geo NIG 1.OG
- Montag 25.11. 12:30 - 14:30 GIS-Labor Geo NIG 1.OG
- Montag 02.12. 12:30 - 14:30 GIS-Labor Geo NIG 1.OG
- Montag 09.12. 12:30 - 14:30 GIS-Labor Geo NIG 1.OG
- Montag 16.12. 12:30 - 14:30 GIS-Labor Geo NIG 1.OG
- Montag 13.01. 12:30 - 14:30 GIS-Labor Geo NIG 1.OG
- N Montag 20.01. 12:30 - 14:30 GIS-Labor Geo NIG 1.OG
- Montag 27.01. 12:30 - 14:30 GIS-Labor Geo NIG 1.OG
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
This course will introduce students to Spatial Data Science as a "fourth paradigm" of science. The course will outline all stages from the initial conceptualization and representation of data to their creation, entry, cleaning, and analysis, e.g., using clustering or classification. We will discuss classics such as clustering via DBSCAN, outline common methods in point pattern analysis, review simple features as the foundation of vector data, develop a first understanding of issues of computational complexity, and also briefly cover FAIR principles (findability, accessibility, interoperability, and reusability) in (research) data management.Topics will include introductory materials in knowledge representation, data engineering, geographic information retrieval (GIR), clustering, classification, and so on, thereby providing an introduction for future class work, e.g., in GIR. We will also touch on several application areas, such as social sensing and place recommendations.
Art der Leistungskontrolle und erlaubte Hilfsmittel
Active participation, assignments, mid-term exam, and final exam.
Mindestanforderungen und Beurteilungsmaßstab
Interest in the representation and analysis of data. We are also happy to invite students outside of geoinformation to participate.A positive evaluation (passing grade) is given with an overall rating of 51% or more.
Prüfungsstoff
Immanent examination character:• Active participation (10%)
• Assignment(s) (20%)
• Mid-term exam (30%)
• Final exam (40%)A positive evaluation (passing grade) is given with an overall rating of 51% or more.
• Assignment(s) (20%)
• Mid-term exam (30%)
• Final exam (40%)A positive evaluation (passing grade) is given with an overall rating of 51% or more.
Literatur
will be announced during the course
Zuordnung im Vorlesungsverzeichnis
(MK2-c-PI) (MK1-W2-PI)
Letzte Änderung: So 03.11.2024 19:06