Achtung! Das Lehrangebot ist noch nicht vollständig und wird bis Semesterbeginn laufend ergänzt.
290107 SE Seminar aus Geoinformation: Geospatial Artificial Intelligence (GeoAI) (2023W)
Prüfungsimmanente Lehrveranstaltung
Labels
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
- Anmeldung von Mo 04.09.2023 09:00 bis Mo 18.09.2023 09:00
- Abmeldung bis Di 31.10.2023 23:59
Details
max. 25 Teilnehmer*innen
Sprache: Englisch
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
The course will take place in November. Details will follow.
- Donnerstag 09.11. 13:00 - 16:00 Multimedia Mapping-Labor, NIG 1.Stock C0110
- Freitag 10.11. 13:00 - 16:00 GIS-Labor Geo NIG 1.OG
- Freitag 17.11. 13:00 - 16:00 GIS-Labor Geo NIG 1.OG
- Donnerstag 23.11. 13:00 - 16:00 Multimedia Mapping-Labor, NIG 1.Stock C0110
- Freitag 24.11. 13:00 - 16:00 GIS-Labor Geo NIG 1.OG
- Donnerstag 30.11. 13:00 - 16:00 Multimedia Mapping-Labor, NIG 1.Stock C0110
- Freitag 01.12. 13:00 - 16:00 Multimedia Mapping-Labor, NIG 1.Stock C0110
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Geospatial Artificial Intelligence (GeoAI) is an advanced course (graduate-level) in spatial data science covering methods and techniques widely used in Cartography and Geoinformatics. The primary focus of this course is on geospatial data-driven modeling. We will introduce spatially explicit machine learning methods in geospatial AI, including spatial clustering, spatial autoregressive regression, geographically weighted regression and classification methods for geospatial data (e.g., georeferenced social media, GPS trajectories, and remote sensing images) and applications in various domains. We will also introduce spatial data processing methods and tools for getting geospatial data (in vector and raster formats) ready for machine learning workflows with Python programming.
Art der Leistungskontrolle und erlaubte Hilfsmittel
Upon completion of the course, you will be expected to:
· Understand concepts, methods, and techniques in spatial data science
· Be able to construct machine learning workflows on various types of geographic data
· Be familiar with Python programming for geospatial data processing
· Solve practical geospatial problems using machine learning and spatial analysis methods
· Understand concepts, methods, and techniques in spatial data science
· Be able to construct machine learning workflows on various types of geographic data
· Be familiar with Python programming for geospatial data processing
· Solve practical geospatial problems using machine learning and spatial analysis methods
Mindestanforderungen und Beurteilungsmaßstab
Assessment criteria: 40% Assignments + 40% Final Report + 20% Class ParticipationCourse grades will be based on literature reading or programming assignments (40% of total grade), one final project report (40% of total grade), and class participation including attendance and group discussion (20% of total grade). Assignments will require Python programming based on lecture materials.
Prüfungsstoff
A final brief report (4 pages including figures and maps):
Introduction
Data
Methods
Results and Discussions
References
Introduction
Data
Methods
Results and Discussions
References
Literatur
Books:
Song Gao, Yingjie Hu, Wenwen Li. (Eds) (2023) Handbook of Geospatial Artificial Intelligence. CRC Press.
Stan Openshaw, Christine Openshaw (1997) Artificial Intelligence in Geography. Wiley
Articles:
Song Gao. (2021) Geospatial Artificial Intelligence (GeoAI). Oxford Bibliographies in Geography. 1-16. DOI: 10.1093/OBO/9780199874002-0228
Krzysztof Janowicz, Song Gao, Grant McKenzie, Yingjie Hu. (2020) GeoAI: Spatially Explicit Artificial Intelligence Techniques for Geographic Knowledge Discovery and Beyond. International Journal of Geographical Information Science. 34(4), 625-636. DOI: 10.1080/13658816.2019.1684500
Song Gao, Yingjie Hu, Wenwen Li. (Eds) (2023) Handbook of Geospatial Artificial Intelligence. CRC Press.
Stan Openshaw, Christine Openshaw (1997) Artificial Intelligence in Geography. Wiley
Articles:
Song Gao. (2021) Geospatial Artificial Intelligence (GeoAI). Oxford Bibliographies in Geography. 1-16. DOI: 10.1093/OBO/9780199874002-0228
Krzysztof Janowicz, Song Gao, Grant McKenzie, Yingjie Hu. (2020) GeoAI: Spatially Explicit Artificial Intelligence Techniques for Geographic Knowledge Discovery and Beyond. International Journal of Geographical Information Science. 34(4), 625-636. DOI: 10.1080/13658816.2019.1684500
Zuordnung im Vorlesungsverzeichnis
(MK4-a-SE)
Letzte Änderung: Do 09.11.2023 10:28