Achtung! Das Lehrangebot ist noch nicht vollständig und wird bis Semesterbeginn laufend ergänzt.
300005 SE Machine Learning in Population Genetics (2025S)
Prüfungsimmanente Lehrveranstaltung
Labels
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
- Anmeldung von Do 06.02.2025 14:00 bis Do 20.02.2025 18:00
- Abmeldung bis Sa 15.03.2025 18:00
Details
max. 10 Teilnehmer*innen
Sprache: Englisch
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
- N Freitag 14.03. 09:45 - 11:15 Seminarraum 1.1 PC, Biologie Djerassiplatz 1, 1.003, Ebene 1
- Freitag 21.03. 09:45 - 11:15 Seminarraum 1.1 PC, Biologie Djerassiplatz 1, 1.003, Ebene 1
- Freitag 28.03. 09:45 - 11:15 Seminarraum 1.1 PC, Biologie Djerassiplatz 1, 1.003, Ebene 1
- Freitag 04.04. 09:45 - 11:15 Seminarraum 1.1 PC, Biologie Djerassiplatz 1, 1.003, Ebene 1
- Freitag 11.04. 09:45 - 11:15 Seminarraum 1.1 PC, Biologie Djerassiplatz 1, 1.003, Ebene 1
- Freitag 02.05. 09:45 - 11:15 Seminarraum 1.1 PC, Biologie Djerassiplatz 1, 1.003, Ebene 1
- Freitag 09.05. 09:45 - 11:15 Seminarraum 1.1 PC, Biologie Djerassiplatz 1, 1.003, Ebene 1
- Freitag 16.05. 09:45 - 11:15 Seminarraum 1.1 PC, Biologie Djerassiplatz 1, 1.003, Ebene 1
- Freitag 23.05. 09:45 - 11:15 Seminarraum 1.1 PC, Biologie Djerassiplatz 1, 1.003, Ebene 1
- Freitag 30.05. 09:45 - 11:15 Seminarraum 1.1 PC, Biologie Djerassiplatz 1, 1.003, Ebene 1
- Freitag 06.06. 09:45 - 11:15 Seminarraum 1.1 PC, Biologie Djerassiplatz 1, 1.003, Ebene 1
- Freitag 13.06. 09:45 - 11:15 Seminarraum 1.1 PC, Biologie Djerassiplatz 1, 1.003, Ebene 1
- Freitag 20.06. 09:45 - 11:15 Seminarraum 1.1 PC, Biologie Djerassiplatz 1, 1.003, Ebene 1
- Freitag 27.06. 09:45 - 11:15 Seminarraum 1.1 PC, Biologie Djerassiplatz 1, 1.003, Ebene 1
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Art der Leistungskontrolle und erlaubte Hilfsmittel
Two assessments are scheduled: one during session 6 and the other in session 12. These assessments will involve analysis tasks or presentations that are closely aligned with the material covered in preceding sessions.
Mindestanforderungen und Beurteilungsmaßstab
Successful completion and submission of the assigned analysis task (i.e. coding), and a scientific presentation are fundamental requirements for evaluation.
Regular attendance is mandatory to ensure a comprehensive understanding of the course material.
Regular attendance is mandatory to ensure a comprehensive understanding of the course material.
Prüfungsstoff
Submission of one assigned analysis task through Moodle.
Presentation of one scientific paper related to the topic (can be chosen from a list provided by the lecturers).
Presentation of one scientific paper related to the topic (can be chosen from a list provided by the lecturers).
Literatur
• Bishop CM. 2006. Pattern Recognition and Machine Learning. Springer.
• Goodfellow I, Courville A, Bengio Y. 2016. Deep Learning. MIT Press.
• Huang X, Rymbekova A, Dolgova O, Lao O, Kuhlwilm M. 2024. Harnessing deep learning for population genetic inference. Nat Rev Genet 25: 61–78.
• Goodfellow I, Courville A, Bengio Y. 2016. Deep Learning. MIT Press.
• Huang X, Rymbekova A, Dolgova O, Lao O, Kuhlwilm M. 2024. Harnessing deep learning for population genetic inference. Nat Rev Genet 25: 61–78.
Zuordnung im Vorlesungsverzeichnis
MAN W5, MAN 3
Letzte Änderung: Fr 17.01.2025 11:26
• Participants will engage in practical problem-solving activities centered around key issues in population genetics, such as detecting introgression segments and identifying population structure. The course covers a range of machine learning paradigms including both supervised and unsupervised learning. Key models such as logistic regression, extra-trees classifiers, dimensionality reduction techniques, and artificial neural networks will be explored in detail.
• The course is structured to be highly interactive, allowing participants to apply their learning in real-time. Attendees can use their personal laptops, or the PCs provided in the lecture room for hands-on sessions.
• For this course, programming experience is required (ideally in python). Basic skills in this regard will be necessary for successful completion of assignments.