Achtung! Das Lehrangebot ist noch nicht vollständig und wird bis Semesterbeginn laufend ergänzt.
300131 VU Statistics course based on R (2023W)
Prüfungsimmanente Lehrveranstaltung
Labels
VOR-ORT
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
- Anmeldung von Do 07.09.2023 14:00 bis Do 21.09.2023 18:00
- Abmeldung bis So 15.10.2023 18:00
Details
max. 60 Teilnehmer*innen
Sprache: Englisch
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
First meeting (Vorbesprechung) on Monday 02.10.2023:
14:30 – 15:30 Seminar room 5.1, Biologie Djerassiplatz 1, 5.131, Ebene 5
The first course will take place every Monday 14:30 - 16:45 Seminar room 5.1, Biologie Djerassiplatz 1, 5.131, Ebene 5
The second course will take place every Tuesday 15:00 - 17:15 Semiar room 5.1, Biologie Djerassiplatz 1, 5.131, Ebene 5
Each student is assigned to one of the two courses (see Moodle).
- Montag 02.10. 14:30 - 15:30 Seminarraum 5.1, Biologie Djerassiplatz 1, 5.131, Ebene 5 (Vorbesprechung)
- Montag 16.10. 14:30 - 16:45 Seminarraum 5.1, Biologie Djerassiplatz 1, 5.131, Ebene 5
- Dienstag 17.10. 15:00 - 17:15 Seminarraum 5.1, Biologie Djerassiplatz 1, 5.131, Ebene 5
- Montag 23.10. 14:30 - 16:45 Seminarraum 5.1, Biologie Djerassiplatz 1, 5.131, Ebene 5
- Dienstag 24.10. 15:00 - 17:15 Seminarraum 5.1, Biologie Djerassiplatz 1, 5.131, Ebene 5
- Montag 30.10. 14:30 - 16:45 Seminarraum 5.1, Biologie Djerassiplatz 1, 5.131, Ebene 5
- Dienstag 31.10. 15:00 - 17:15 Seminarraum 5.1, Biologie Djerassiplatz 1, 5.131, Ebene 5
- Montag 06.11. 14:30 - 16:45 Seminarraum 5.1, Biologie Djerassiplatz 1, 5.131, Ebene 5
- Dienstag 07.11. 15:00 - 17:15 Seminarraum 5.1, Biologie Djerassiplatz 1, 5.131, Ebene 5
- Montag 13.11. 14:30 - 16:45 Seminarraum 5.1, Biologie Djerassiplatz 1, 5.131, Ebene 5
- Dienstag 14.11. 15:00 - 17:15 Seminarraum 5.1, Biologie Djerassiplatz 1, 5.131, Ebene 5
- Montag 20.11. 14:30 - 16:45 Seminarraum 5.1, Biologie Djerassiplatz 1, 5.131, Ebene 5
- Dienstag 21.11. 15:00 - 17:15 Seminarraum 5.1, Biologie Djerassiplatz 1, 5.131, Ebene 5
- Montag 27.11. 14:30 - 16:45 Seminarraum 5.1, Biologie Djerassiplatz 1, 5.131, Ebene 5
- Dienstag 28.11. 15:00 - 17:15 Seminarraum 1.5, Biologie Djerassiplatz 1, 1.012, Ebene 1
- Montag 04.12. 14:30 - 16:45 Seminarraum 5.1, Biologie Djerassiplatz 1, 5.131, Ebene 5
- Dienstag 05.12. 15:00 - 17:15 Seminarraum 5.1, Biologie Djerassiplatz 1, 5.131, Ebene 5
- Montag 11.12. 14:30 - 16:45 Seminarraum 5.1, Biologie Djerassiplatz 1, 5.131, Ebene 5
- Dienstag 12.12. 15:00 - 17:15 Seminarraum 5.1, Biologie Djerassiplatz 1, 5.131, Ebene 5
- Montag 08.01. 14:30 - 16:45 Seminarraum 5.1, Biologie Djerassiplatz 1, 5.131, Ebene 5
- Dienstag 09.01. 15:00 - 17:15 Seminarraum 5.1, Biologie Djerassiplatz 1, 5.131, Ebene 5
- Montag 15.01. 14:30 - 16:45 Seminarraum 5.1, Biologie Djerassiplatz 1, 5.131, Ebene 5
- Dienstag 16.01. 15:00 - 17:15 Seminarraum 5.1, Biologie Djerassiplatz 1, 5.131, Ebene 5
- Montag 22.01. 14:30 - 16:45 Seminarraum 5.1, Biologie Djerassiplatz 1, 5.131, Ebene 5
- Dienstag 23.01. 15:00 - 17:15 Seminarraum 5.1, Biologie Djerassiplatz 1, 5.131, Ebene 5
- Montag 29.01. 14:30 - 16:45 Seminarraum 5.1, Biologie Djerassiplatz 1, 5.131, Ebene 5
- Dienstag 30.01. 15:00 - 17:15 Seminarraum 5.1, Biologie Djerassiplatz 1, 5.131, Ebene 5
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Students are introduced to the free software environment R (https://www.r-project.org/) and how to perform statistical analyses using R. Each unit includes a theoretical and practical part: different statistical methods are first presented and should then be applied by the students to analyze provided datasets.It is strongly recommended to bring a LAPTOP to the course, but working in groups of two using one laptop is also possible.R is available for Windows, macOS, and Linux (for more information visit: https://www.r-project.org/).Based on the learned methods and by gaining a general understanding for R, students should be able to perform their own statistical analyses for their master or PhD thesis, but also to further familiarize with R and other (statistical) methods.Included topics: Statistical basics, installation of R and fundamentals, simple graphics, basic statistical tests (e.g., Shapiro-Wilk test, Levene’s test, t-test, U-test, ANOVA, Chi-squared test, correlations), power analysis, linear models (2-way ANOVA, multiple regression, ANCOVA, MANOVA), linear mixed models, generalized linear (mixed) model (e.g., for count, proportion, or binary data), multivariate statistics (e.g., principal component analysis), and further selected methods.
Art der Leistungskontrolle und erlaubte Hilfsmittel
Presence and participation in the units (obligatory), regular intermediate tests, final exam.
Continuous assessment of course work! (prüfungsimmanente Lehrveranstaltung)
Continuous assessment of course work! (prüfungsimmanente Lehrveranstaltung)
Mindestanforderungen und Beurteilungsmaßstab
Presence and participation in the units (obligatory), regular intermediate tests, final exam.Each part must be completed:
- Presence and participation in the units: max. 30 points
- 6 intermediate tests: max. 30 points (max. 5 points per test)
- Final exam: max. 40 points89 – 100 points: Very good (1)
76 – 88 points: Good (2)
63 – 75 points: Satisfactory (3)
51 – 62 points: Adequate (4)
0 – 50 points: Unsatisfactory (5)
- Presence and participation in the units: max. 30 points
- 6 intermediate tests: max. 30 points (max. 5 points per test)
- Final exam: max. 40 points89 – 100 points: Very good (1)
76 – 88 points: Good (2)
63 – 75 points: Satisfactory (3)
51 – 62 points: Adequate (4)
0 – 50 points: Unsatisfactory (5)
Prüfungsstoff
All statistical methods presented in the course.
Literatur
Relevant materials will be provided during the course.
For further information, several excellent books for R and online tutorials are available.
Examples for books:
- Statistics: An Introduction Using R. M. J. Crawley. Wiley.
- The R Book. M. J. Crawley. Wiley.
- R for Data Science. H. Wickham. O’Reilly.
- The Book of R. T. M. Davies. No Starch Press.
For further information, several excellent books for R and online tutorials are available.
Examples for books:
- Statistics: An Introduction Using R. M. J. Crawley. Wiley.
- The R Book. M. J. Crawley. Wiley.
- R for Data Science. H. Wickham. O’Reilly.
- The Book of R. T. M. Davies. No Starch Press.
Zuordnung im Vorlesungsverzeichnis
CoBeNe 2, MNB6, MZO4
Letzte Änderung: Mo 30.10.2023 13:48