Achtung! Das Lehrangebot ist noch nicht vollständig und wird bis Semesterbeginn laufend ergänzt.
300131 VU Statistics course based on R (2024W)
Prüfungsimmanente Lehrveranstaltung
Labels
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
- Anmeldung von Do 12.09.2024 14:00 bis Do 26.09.2024 18:00
- Abmeldung bis Di 15.10.2024 18:00
Details
max. 30 Teilnehmer*innen
Sprache: Englisch
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
First meeting (Vorbesprechung) on Monday 07.10.2024, 15:00 – 16:00 Seminar room 5.1, Biologie Djerassiplatz 1, 5.131, Ebene 5
Participation in the first meeting (Vorbesprechung) is obligatory (substitute possible), otherwise you will be de-registered from the course.- Montag 07.10. 15:00 - 18:00 Seminarraum 5.1, Biologie Djerassiplatz 1, 5.131, Ebene 5
- Montag 14.10. 15:00 - 18:00 Seminarraum 5.1, Biologie Djerassiplatz 1, 5.131, Ebene 5
- Montag 21.10. 15:00 - 18:00 Seminarraum 5.1, Biologie Djerassiplatz 1, 5.131, Ebene 5
- Montag 28.10. 15:00 - 18:00 Seminarraum 5.1, Biologie Djerassiplatz 1, 5.131, Ebene 5
- Montag 04.11. 15:00 - 18:00 Seminarraum 5.1, Biologie Djerassiplatz 1, 5.131, Ebene 5
- Montag 11.11. 15:00 - 18:00 Seminarraum 5.1, Biologie Djerassiplatz 1, 5.131, Ebene 5
- Montag 18.11. 15:00 - 18:00 Seminarraum 5.1, Biologie Djerassiplatz 1, 5.131, Ebene 5
- Montag 25.11. 15:00 - 18:00 Seminarraum 5.1, Biologie Djerassiplatz 1, 5.131, Ebene 5
- Montag 02.12. 15:00 - 18:00 Seminarraum 5.1, Biologie Djerassiplatz 1, 5.131, Ebene 5
- Montag 09.12. 15:00 - 18:00 Seminarraum 5.1, Biologie Djerassiplatz 1, 5.131, Ebene 5
- Montag 16.12. 15:00 - 18:00 Seminarraum 5.1, Biologie Djerassiplatz 1, 5.131, Ebene 5
- Montag 13.01. 15:00 - 18:00 Seminarraum 5.1, Biologie Djerassiplatz 1, 5.131, Ebene 5
- N Montag 20.01. 15:00 - 18:00 Seminarraum 5.1, Biologie Djerassiplatz 1, 5.131, Ebene 5
- Montag 27.01. 15:00 - 18:00 Seminarraum 5.1, Biologie Djerassiplatz 1, 5.131, Ebene 5
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Students are introduced to the free software environment R ( https://www.r-project.org ) and how to perform statistical analyses using R. Each unit includes theory and practice: different statistical methods are first presented and should then be applied by the students to analyze provided datasets.It is strongly recommended to bring a LAPTOP to the course, but working in groups of two using one laptop is also possible.R is available for Windows, macOS, and Linux (for more information visit: https://www.r-project.org ).Based on the learned methods and by gaining a general understanding for R, students should be able to perform their own statistical analyses for their master or PhD thesis, but also to further familiarize with R and other (statistical) methods.Included topics: Statistical basics, installation of R and fundamentals, simple graphics, basic statistical tests (e.g., Shapiro-Wilk test, Levene’s test, t-test, U-test, ANOVA, Chi-squared test, correlations), linear models (2-way ANOVA, multiple regression, ANCOVA), linear mixed models, generalized linear (mixed) models (e.g., for count, proportion, or binary data), and further selected methods.
Art der Leistungskontrolle und erlaubte Hilfsmittel
Regular intermediate tests, final exam.
Continuous assessment of course work! (prüfungsimmanente Lehrveranstaltung)
Continuous assessment of course work! (prüfungsimmanente Lehrveranstaltung)
Mindestanforderungen und Beurteilungsmaßstab
Each part must be completed:
- 3 intermediate tests: max. 60 points (max. 20 points per test)
- Final exam: max. 40 points89 – 100 points: Very good (1)
76 – 88 points: Good (2)
63 – 75 points: Satisfactory (3)
51 – 62 points: Adequate (4)
0 – 50 points: Unsatisfactory (5)
- 3 intermediate tests: max. 60 points (max. 20 points per test)
- Final exam: max. 40 points89 – 100 points: Very good (1)
76 – 88 points: Good (2)
63 – 75 points: Satisfactory (3)
51 – 62 points: Adequate (4)
0 – 50 points: Unsatisfactory (5)
Prüfungsstoff
All statistical methods presented in the course.
Literatur
Relevant materials will be provided during the course.
For further information, several excellent books for R and online tutorials are available.The lecture is mainly based on these books:
- Statistics: An Introduction Using R. M. J. Crawley. Wiley.
- The R Book. M. J. Crawley. Wiley.
For further information, several excellent books for R and online tutorials are available.The lecture is mainly based on these books:
- Statistics: An Introduction Using R. M. J. Crawley. Wiley.
- The R Book. M. J. Crawley. Wiley.
Zuordnung im Vorlesungsverzeichnis
CoBeNe 2, MNB6, MZO4
Letzte Änderung: Di 01.10.2024 11:27