Universität Wien
Achtung! Das Lehrangebot ist noch nicht vollständig und wird bis Semesterbeginn laufend ergänzt.

323103 VU Data science approaches for advancing drug discovery - MPS5 (2018S)

2.00 ECTS (1.00 SWS), SPL 32 - Pharmazie
Prüfungsimmanente Lehrveranstaltung

Details

Sprache: Englisch

Lehrende

Termine

The date for the first meeting (kick-off) where we discuss the schedule of the VU is available on moodle.


Information

Ziele, Inhalte und Methode der Lehrveranstaltung

Data science has become an important field in drug discovery and development nowadays. It offers a level of understanding of health, disease and treatment on a scale never before imagined, i.e. it can help researchers to find new drugs or re-use old drugs for new indications. In this lecture and seminar we will talk about existing data sources in the open domain, database schemes/structures, statistics, chemical data & cheminformatics approaches in drug discovery etc. We will further introduce you into the data management/manipulation tools Knime and R and give some more specialized seminars on the uses of KNIME and R in some of the expanding fields in data science (such as machine learning).

Drug discovery and development: from old paradigms to rational approaches:

- VO 1: Traditional drug discovery paradigms and rational drug discovery

Data-driven drug discovery: the holistic view:

- VO 2: Introduction to data-driven drug discovery and translational medicine
- VO 3: Statistics for data sciences: Distributions, correlations, hypothesis testing
- VO 4: Basics of statistical learning
- VO 5: Chemical Data: chemical structure representations, chemical descriptors
- VO 6: Cheminformatics approaches in drug discovery
- VO 7: Data sources, data integration: ChEMBL, OpenPHACTS
- VO 8: Database scheme/structures, Data querying

Predictive Modelling with R/KNIME (Practical part):

- UE 1: QSAR and machine learning in KNIME
- UE 2: Pathway/disease analysis in KNIME
- UE 3: Applied Cheminformatics in R
- UE 4: Data analyses and data visualization in R

Art der Leistungskontrolle und erlaubte Hilfsmittel

Written exam at the end of the VU;
Active contribution during the Practical part

Mindestanforderungen und Beurteilungsmaßstab

Written exam at the end of the VU;
Active contribution during the Practical part;
Presence at the 8 lectures and 4 practical units;
material for further reading will be pointed to in each individual lecture

Prüfungsstoff

Content of the lectures and the material for further reading

Literatur

Distributed in the lectures

Zuordnung im Vorlesungsverzeichnis

Letzte Änderung: Fr 31.08.2018 08:43