Achtung! Das Lehrangebot ist noch nicht vollständig und wird bis Semesterbeginn laufend ergänzt.
340119 UE Maschinelle Translation (2021S)
Prüfungsimmanente Lehrveranstaltung
Labels
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
- Anmeldung von Mo 15.02.2021 09:00 bis Fr 26.02.2021 17:00
- Anmeldung von Mo 08.03.2021 09:00 bis Fr 12.03.2021 17:00
- Abmeldung bis Mi 31.03.2021 23:59
Details
max. 25 Teilnehmer*innen
Sprache: Deutsch, Englisch
Lehrende
Termine
DI wtl von 09.03.2021 bis 20.04.2021 11.00-12.30 Ort: Digital; DI wtl von 04.05.2021 bis 22.06.2021 11.00-12.30 Ort: Digital
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Art der Leistungskontrolle und erlaubte Hilfsmittel
Student portfolio (mark > 60%)
Mindestanforderungen und Beurteilungsmaßstab
Prüfungsstoff
Literatur
- Carstensen, K-U. 2017. Sprachtechnologie - Ein Überblick. http://kai-uwe-carstensen.de/
Publikationen/Sprachtechnologie.pdf
- Chan, Sin-Wai. Ed. 2015. Routledge encyclopedia of translation technology Abingdon, Oxon : Routledge.
- Depraetere, I. Ed. 2011. Perspectives on translation quality. Berlin: de Gruyter Mouton
- Hausser, Roland. 2000. Grundlagen der Computerlinguistik - Mensch-Maschine-Kommunikation in natürlicher Sprache (mit 772 – Übungen). Springer.
- Kockaert, H. J. and Steurs, F. Eds. 2015. Handbook of terminology. Amsterdam; Philadelphia: John Benjamins Publishing Company.
- Koehn, P. 2020. Neural Machine Translation. Cambridge University Press
- Munday, J. 2012. Evaluation in translation: critical points of translator decision-making: Routledge.
- O'Hagan, M. Ed. 2019. The Routledge Handbook of Translation and Technology. Abingdon: Routledge
- Waibel, A. 2015. Sprachbarrieren durchbrechen: Traum oder Wirklichkeit? Nova Acta Leopoldina NF 122, Nr. 410, 101–123. https://isl.anthropomatik.kit.edu/downloads/
NAL_Bd122_Nr410_101-124_Waibel_low_res.pdf
- Wright, S. E. and Budin, G. 1997/2001. The Handbook of Terminology Management. Two volumes. Amsterdam/Philadelphia: John Benjamins Publishing Company.
- BS EN ISO 17100:2015: Translation Services. Requirements for translation services
- ISO/DIS 18587 Translation services - Post-editing of machine translation output – Requirements
- ASTM F2575 Standard Guide for Quality Assurance in Translation
Publikationen/Sprachtechnologie.pdf
- Chan, Sin-Wai. Ed. 2015. Routledge encyclopedia of translation technology Abingdon, Oxon : Routledge.
- Depraetere, I. Ed. 2011. Perspectives on translation quality. Berlin: de Gruyter Mouton
- Hausser, Roland. 2000. Grundlagen der Computerlinguistik - Mensch-Maschine-Kommunikation in natürlicher Sprache (mit 772 – Übungen). Springer.
- Kockaert, H. J. and Steurs, F. Eds. 2015. Handbook of terminology. Amsterdam; Philadelphia: John Benjamins Publishing Company.
- Koehn, P. 2020. Neural Machine Translation. Cambridge University Press
- Munday, J. 2012. Evaluation in translation: critical points of translator decision-making: Routledge.
- O'Hagan, M. Ed. 2019. The Routledge Handbook of Translation and Technology. Abingdon: Routledge
- Waibel, A. 2015. Sprachbarrieren durchbrechen: Traum oder Wirklichkeit? Nova Acta Leopoldina NF 122, Nr. 410, 101–123. https://isl.anthropomatik.kit.edu/downloads/
NAL_Bd122_Nr410_101-124_Waibel_low_res.pdf
- Wright, S. E. and Budin, G. 1997/2001. The Handbook of Terminology Management. Two volumes. Amsterdam/Philadelphia: John Benjamins Publishing Company.
- BS EN ISO 17100:2015: Translation Services. Requirements for translation services
- ISO/DIS 18587 Translation services - Post-editing of machine translation output – Requirements
- ASTM F2575 Standard Guide for Quality Assurance in Translation
Zuordnung im Vorlesungsverzeichnis
Letzte Änderung: Mo 07.02.2022 10:10
Students will apply elements of the three main machine translation (MT) paradigms to a range of tasks, ranging from automatic translation between closely-related languages, language variants or dialects to building a new machine translation engine from scratch.Using state-of-the-art technologies, students will learn to design a machine translation engine, gather training data, clean the data, train at least one engine, evaluate it, and improve it.In addition, students will also use controlled language and technical writing principles and techniques in order to author or edit content for the purpose of improving the quality of raw MT output. Post-editing MT (PEMT) standards and best practices will be applied to practical PEMT tasks, which will give students the opportunity to fine-tune their skills identifying and annotating subtle MT errors using popular industry annotation frameworks.Content:
• Rule-based (RBMT), statistical (SMT) and neural machine translation (NMT): current applications
• NMT architectures
• MT evaluation metrics
• MT quality estimation (QE) practices
• MT in professional workflows
• MT in more complex systems (e.g. speech-to-speech translation)
• Controlled language; pre-editing
• Post-editing machine translation (PEMT) standards and best practices
• Ethics of using MT and impact of MT on freelance linguistsDidactic approach:
Students will need to complete assignments involving a wide range of technologies involved in the process of building MT engines, estimating the quality of their output, and comparing the results of these automatic estimations to other MT evaluation techniques.Students will also gain experience of post-editing MT output.
Depending on the lecturer available, the seminar will be held in German or in English. If it is held in English, it will have, whenever possible, simultaneous (but automatic, machine-generated) translation into German which, although not perfect, should still give students broad access to the live discussions and so that they have the live experience of machine translation applied in the
course itself.