Achtung! Das Lehrangebot ist noch nicht vollständig und wird bis Semesterbeginn laufend ergänzt.
390053 DK PhD-L: Advanced Stochastic Models (2021W)
Prüfungsimmanente Lehrveranstaltung
Labels
GEMISCHT
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
- Anmeldung von Mo 13.09.2021 09:00 bis Do 23.09.2021 12:00
- Abmeldung bis Fr 15.10.2021 23:59
Details
max. 15 Teilnehmer*innen
Sprache: Englisch
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
- Montag 25.10. 12:55 - 16:00 Digital
- Montag 15.11. 13:00 - 16:00 Digital
- Montag 06.12. 13:00 - 16:00 Digital
- Montag 24.01. 13:00 - 16:00 Digital
- Montag 21.02. 09:45 - 16:30 Hörsaal 17 Oskar-Morgenstern-Platz 1 2.Stock
- Dienstag 22.02. 09:45 - 16:25 Hörsaal 17 Oskar-Morgenstern-Platz 1 2.Stock
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Art der Leistungskontrolle und erlaubte Hilfsmittel
Presentation on own simulation project at the end of the course
Mindestanforderungen und Beurteilungsmaßstab
Prüfungsstoff
Participants need to be able to present their project in the context of models discussed, apply discussed modelling languages, propose relevant approaches to analysing stochastic input data and results, and present an implemented prototype.
Literatur
Recommended reading:- Robinson, S. (2005). Discrete-event simulation: from the pioneers to the present, what next?. Journal of the Operational Research Society, 56(6), 619-629.
- Tako, A. A., & Robinson, S. (2012). The application of discrete event simulation and system dynamics in the logistics and supply chain context. Decision Support Systems, 52(4), 802-815.
- Chan, W. K. V., Son, Y. J., & Macal, C. M. (2010, December). Agent-based simulation tutorial-simulation of emergent behavior and differences between agent-based simulation and discrete-event simulation. Proceedings of the 2010 Winter Simulation Conference (WSC), (pp. 135-150). IEEE.
- Sargent, Robert G. "Verification and validation of simulation models." Journal of Simulation 7, no. 1 (2013): 12-24.- Law: Simulation Modeling and Analysis (2014)
- Tako, A. A., & Robinson, S. (2012). The application of discrete event simulation and system dynamics in the logistics and supply chain context. Decision Support Systems, 52(4), 802-815.
- Chan, W. K. V., Son, Y. J., & Macal, C. M. (2010, December). Agent-based simulation tutorial-simulation of emergent behavior and differences between agent-based simulation and discrete-event simulation. Proceedings of the 2010 Winter Simulation Conference (WSC), (pp. 135-150). IEEE.
- Sargent, Robert G. "Verification and validation of simulation models." Journal of Simulation 7, no. 1 (2013): 12-24.- Law: Simulation Modeling and Analysis (2014)
Zuordnung im Vorlesungsverzeichnis
Letzte Änderung: Fr 12.05.2023 00:26
- System dynamic, discrete event-based and agent-based simulation paradigms
- Analysis of stochastic simulation results
- The role of simulation validation and calibration
- Challenges of computational efficiency
They also gain hands-on experience in applying these concepts to case scenarios in implementing simulation models in Python SimPy and NetLogo.