Achtung! Das Lehrangebot ist noch nicht vollständig und wird bis Semesterbeginn laufend ergänzt.
400009 SE Experiments in the Social Sciences (2024S)
Methodenseminar
Prüfungsimmanente Lehrveranstaltung
Labels
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
- Anmeldung von Do 01.02.2024 09:00 bis So 25.02.2024 23:59
- Abmeldung bis Mo 18.03.2024 23:59
Details
max. 15 Teilnehmer*innen
Sprache: Englisch
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
- Dienstag 05.03. 11:30 - 13:30 Seminarraum 12, Kolingasse 14-16, OG01
- Dienstag 19.03. 11:30 - 13:30 Seminarraum 5, Währinger Straße 29 1.UG
- Dienstag 09.04. 11:30 - 13:30 Seminarraum 11, Währinger Straße 29 2.OG
- Dienstag 16.04. 11:30 - 13:30 Seminarraum 5, Währinger Straße 29 1.UG
- Dienstag 23.04. 11:30 - 13:30 Seminarraum 2, Währinger Straße 29 1.UG
- Dienstag 30.04. 11:30 - 13:30 Seminarraum 5, Währinger Straße 29 1.UG
- Dienstag 07.05. 11:30 - 13:30 Seminarraum 2, Währinger Straße 29 1.UG
- Dienstag 14.05. 11:30 - 13:30 Seminarraum 5, Währinger Straße 29 1.UG
- Dienstag 21.05. 11:30 - 13:30 Seminarraum 11, Währinger Straße 29 2.OG
- Dienstag 28.05. 11:30 - 13:30 Seminarraum 5, Währinger Straße 29 1.UG
- Dienstag 04.06. 11:30 - 13:30 Seminarraum 11, Währinger Straße 29 2.OG
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Art der Leistungskontrolle und erlaubte Hilfsmittel
Everyone participates actively in the course. Willingness and openness to take part in the discussion are a prerequisite.
During the semester, everyone picks a text and gives a short presentation. The presentation needs to be in English.
Essay at the end, in which you present your phd project and an experiment you are planning to conduct. In case you are not actually planning to conduct an experiment, this will then be a hypothetical task. The essays are recommended to be in English. However, it is also possible to write an essay in German.
During the semester, everyone picks a text and gives a short presentation. The presentation needs to be in English.
Essay at the end, in which you present your phd project and an experiment you are planning to conduct. In case you are not actually planning to conduct an experiment, this will then be a hypothetical task. The essays are recommended to be in English. However, it is also possible to write an essay in German.
Mindestanforderungen und Beurteilungsmaßstab
Active participation
Presentation of text (50%)
Essay (50%)
Presentation of text (50%)
Essay (50%)
Prüfungsstoff
Participants need to follow all presentations and what is being discussed. Participants also need to read all texts and prepare for the course
Literatur
ield, A. P., & Hole, G. (2003). How to design and report experiments. Sage publications Ltd.
• Gelman, A., Hill, J., & Vehtari, A. (2020). Regression and Other Stories (1st ed.). Cambridge University Press. https://doi.org/10.1017/9781139161879
• Gelman, A., Hill, J., & Vehtari, A. (2020). Regression and Other Stories (1st ed.). Cambridge University Press. https://doi.org/10.1017/9781139161879
Zuordnung im Vorlesungsverzeichnis
Letzte Änderung: Mi 31.07.2024 12:06
In this course we will discuss the scientific experiment, how and when it can be used, what pitfalls to avoid, and how to interpret results. We will focus on statistical power, design of stimuli, and open science (with a focus on Registered Reports). We will also focus on how best to analyze results.
We will explore these topics by reading and discussing texts, through inputs by me, short summaries of the texts presented by you, and hands-on analyses in R. Throughout, we will engage with your phd projects and your individual perspectives.
Each student will give a short summary of one of the papers we discuss. Everyone is expected to participate actively in the discussions.
In the hands-on part of the seminar, we will analyze actual data/experiments. We will use the software R. Although not needed, a basic understanding of R is recommended. If R is new, I recommend reading introductory texts or watching online tutorials. Here are some helpful materials:
- https://r4ds.had.co.nz
- https://github.com/jobreu/r-intro-gesis-2021
- https://github.com/ccs-amsterdam/r-course-material
- https://www.youtube.com/watch?v=BvKETZ6kr9Q
1. Introduction
2. Basics: What’s an Experiment?
3. Planning an Experiment
4. Experimental Designs
5. Open Science & Registered Reports
6. Statistical Power
7. Analysis: t-Tests
8. Analysis: ANOVAs
9. Analysis: Regressions
10. Analysis: Multilevel Analyses
11. Conclusion