Achtung! Das Lehrangebot ist noch nicht vollständig und wird bis Semesterbeginn laufend ergänzt.
400010 SE Advanced research design and causal inference (2023S)
Vertiefungsseminar Methoden
Prüfungsimmanente Lehrveranstaltung
Labels
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
- Anmeldung von Mi 01.02.2023 09:00 bis Fr 24.02.2023 09:00
- Abmeldung bis Do 30.03.2023 09:00
Details
max. 15 Teilnehmer*innen
Sprache: Englisch
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
On the 2nd of June the course starts at 11 am.
- Freitag 10.03. 09:45 - 13:00 PC-Seminarraum 1, Kolingasse 14-16, OG01
- Freitag 24.03. 09:45 - 13:00 PC-Seminarraum 1, Kolingasse 14-16, OG01
- Freitag 21.04. 09:45 - 13:00 PC-Seminarraum 1, Kolingasse 14-16, OG01
- Freitag 05.05. 09:45 - 13:00 PC-Seminarraum 1, Kolingasse 14-16, OG01
- Freitag 26.05. 09:45 - 13:00 PC-Seminarraum 1, Kolingasse 14-16, OG01
- Freitag 02.06. 09:45 - 13:00 PC-Seminarraum 1, Kolingasse 14-16, OG01
- Freitag 16.06. 09:45 - 13:00 PC-Seminarraum 1, Kolingasse 14-16, OG01
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Art der Leistungskontrolle und erlaubte Hilfsmittel
• Active participation and contribution in class (15%)
• Five critiques (approx. 150 words each) of published articles (15%)
• In-person test/exam with questions about different methods (25%)
• EITHER a Research design for a planned paper OR an Analysis report for a planned paper (45%, about 3,500 words)Students should attend at least 80% of the sessions.
• Five critiques (approx. 150 words each) of published articles (15%)
• In-person test/exam with questions about different methods (25%)
• EITHER a Research design for a planned paper OR an Analysis report for a planned paper (45%, about 3,500 words)Students should attend at least 80% of the sessions.
Mindestanforderungen und Beurteilungsmaßstab
Students have to pass each assessment part (see above) to obtain a positive grade for the course.
Prüfungsstoff
Topics will include materials covered in class and/or on the reading list. Some assessments may also demand students to research something themselves or collect material themselves. Research designs and Analysis reports will involve topics chosen by the students, depending on their own research interest.
Literatur
The following textbooks cover several topics of the course and can be used as reference throughout:• Angrist, Joshua D., and Jörn-Steffen Pischke. 2008. Mostly Harmless Econometrics: An Empiricist’s Companion. Princeton: Princeton University Press.
• Cunningham, Scott. 2021. Causal Inference: The Mixtape. New Haven: Yale University Press.Specific readings for each class will be announced at the beginning of term.
• Cunningham, Scott. 2021. Causal Inference: The Mixtape. New Haven: Yale University Press.Specific readings for each class will be announced at the beginning of term.
Zuordnung im Vorlesungsverzeichnis
Letzte Änderung: Di 14.03.2023 13:09
2) Instrumental variables
3) Difference-in-differences
4) Synthetic control
5) Regression discontinuity designsThese methods claim to advance on standard regression models by adjusting for selection bias on observables and unobservables. With regard to each method covered, we will address its theoretical foundations and assumptions, practical considerations and challenges, critical discussions of applications, implementation in software as well as interpretation of results.Each session will consist of 1) an interactive lecture element, in which you participate through live polls and mini tasks; 2) a computer lab, in which you practice the implementation of the methods in R (or STATA); 3) a discussion of an application of the method in a published research paper.While this is a course in advanced research design using quantitative methods, no prior knowledge of causal inference methods is expected. A basic understanding of quantitative methods (e.g. multiple regression analysis) is desired, but students with strong motivation may also acquire this knowledge in parallel to the course. The first session of the course will provide a quick review of multiple regression analysis. A solid understanding of research design in the social sciences is assumed. Some prior familiarity with R is an asset; some familiarity with STATA is helpful.