Warning! The directory is not yet complete and will be amended until the beginning of the term.
040100 VO Mathematics 2 (2023S)
Labels
Um Zugriff zu den Unterlagen in Moodle zu erhalten, melden Sie sich bitte via U:Space für die VO an.
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
Language: German
Examination dates
-
Monday
03.07.2023
15:00 - 18:15
Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
Hörsaal 14 Oskar-Morgenstern-Platz 1 2.Stock
Hörsaal 6 Oskar-Morgenstern-Platz 1 1.Stock - Wednesday 27.09.2023 15:00 - 17:45 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Friday 17.11.2023 15:00 - 18:15 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
-
Friday
02.02.2024
15:00 - 18:15
Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
Hörsaal 6 Oskar-Morgenstern-Platz 1 1.Stock
Lecturers
Classes (iCal) - next class is marked with N
Begleitend zur VO wird ein Tutorium zu folgenden Terminen angeboten:
DO 09.03.2023 13.15-14.45 Ort: Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß;
DO 16.03.2023, 23.03.2023 und 30.03.2023 13.15-14.45 Ort: Hörsaal 3 Oskar-Morgenstern-Platz 1 Erdgeschoß;
FR 21.04.2023 13.15-14.45 Ort: Hörsaal 3 Oskar-Morgenstern-Platz 1 Erdgeschoß;
DO 27.04.2023 13.15-14.45 Ort: Hörsaal 6 Oskar-Morgenstern-Platz 1 1.Stock;
DO wtl von 04.05.2023 bis 22.06.2023 13.15-14.45 Ort: Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß;
DO 29.06.2023 13.15-14.45 Ort: Hörsaal 9 Oskar-Morgenstern-Platz 1 1.Stock
- Friday 03.03. 13:15 - 16:30 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Monday 06.03. 13:15 - 16:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Monday 20.03. 13:15 - 16:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Monday 27.03. 13:15 - 16:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Monday 17.04. 13:15 - 16:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Monday 08.05. 13:15 - 16:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Monday 15.05. 13:15 - 16:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Monday 22.05. 13:15 - 16:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Friday 26.05. 13:15 - 16:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Monday 05.06. 13:15 - 16:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Monday 12.06. 13:15 - 16:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Monday 19.06. 13:15 - 16:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
Information
Aims, contents and method of the course
Assessment and permitted materials
written exam about the topics discussed in the lecture and the UEPermitted materials for the exam:
- Handwritten A4 sheet;
- A simple, non-programmable calculator, without matrix operations, which does not plot graphs, solve equations, and does not compute derivatives or integrals is allowed.Please note that mobile phones, smart watches etc. must be out of reach during the exam.For more information please visit
http://homepage.univie.ac.at/andrea.gaunersdorfer/teaching/mathe2.html
- Handwritten A4 sheet;
- A simple, non-programmable calculator, without matrix operations, which does not plot graphs, solve equations, and does not compute derivatives or integrals is allowed.Please note that mobile phones, smart watches etc. must be out of reach during the exam.For more information please visit
http://homepage.univie.ac.at/andrea.gaunersdorfer/teaching/mathe2.html
Minimum requirements and assessment criteria
see German webpage
Examination topics
see German webpage
Reading list
see German webpage
Association in the course directory
Last modified: We 15.11.2023 14:07
as well as their application in business and economics.For more information see the German webpage.Contents:
1. Introduction: optimization problems in business and economics
2. Differential calculus for functions of several variables
(real valued functions of several variables, some basics terms of topoloy, partial derivatives, derivative, tangent plane, gradient, vector functions, Jacobian, chain rule, directional derivatives, total differential, geometric interpretation of the gradient, second derivatives, Hessian, second directional derivative)
3. Convexity
(convex sets, convex and concave functions in several variables)
4. Optimization of scalar valued functions
(stationary points, second order conditions, comparative statics, envelope theorem)
Inverse and implicit functions
5. Optimization with equality constraints: Lagrange's method
(first and second order conditions, interpretation of the Lagrange multipliers, conditions for global optima, quasiconcavity and quasiconvexity, economic applications)
6. Nonlinear programming
(convex programs, Kuhn-Tucker conditions, constraint qualifications, saddle point condition)
7. Linear programming
(model formulation, assumptions underlying a linear planning model, graphic solution of two-variable programs, basic solutions, characterization of the sets of feasible and optimal solutions, simplex method, formal structure of the simplex tabelaus, alternative optimal solutions, duality, complementary slackness, economic interpretation of the dual programme, interpretation of a computer solution)