Warning! The directory is not yet complete and will be amended until the beginning of the term.
040114 UK Optimization under Uncertainty (MA) (2017S)
Continuous assessment of course work
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
- Registration is open from We 15.02.2017 09:00 to We 22.02.2017 12:00
- Deregistration possible until Tu 14.03.2017 23:59
Details
max. 50 participants
Language: English
Lecturers
Classes (iCal) - next class is marked with N
- Monday 06.03. 13:15 - 14:45 Seminarraum 16 Oskar-Morgenstern-Platz 1 3.Stock
- Tuesday 07.03. 11:30 - 13:00 Studierzone
- Tuesday 14.03. 08:00 - 10:00 Seminarraum 6 Oskar-Morgenstern-Platz 1 1.Stock
- Monday 20.03. 13:15 - 14:45 Seminarraum 16 Oskar-Morgenstern-Platz 1 3.Stock
- Tuesday 21.03. 11:30 - 13:00 Studierzone
- Monday 27.03. 13:15 - 14:45 Seminarraum 16 Oskar-Morgenstern-Platz 1 3.Stock
- Tuesday 28.03. 11:30 - 13:00 Studierzone
- Monday 03.04. 13:15 - 14:45 Seminarraum 16 Oskar-Morgenstern-Platz 1 3.Stock
- Monday 24.04. 13:15 - 14:45 Seminarraum 16 Oskar-Morgenstern-Platz 1 3.Stock
- Tuesday 25.04. 11:30 - 13:00 Seminarraum 3 Oskar-Morgenstern-Platz 1 1.Stock
- Monday 08.05. 13:15 - 14:45 Seminarraum 16 Oskar-Morgenstern-Platz 1 3.Stock
- Monday 15.05. 13:15 - 14:45 Seminarraum 16 Oskar-Morgenstern-Platz 1 3.Stock
- Monday 22.05. 13:15 - 14:45 Seminarraum 16 Oskar-Morgenstern-Platz 1 3.Stock
- Monday 29.05. 13:15 - 14:45 Seminarraum 16 Oskar-Morgenstern-Platz 1 3.Stock
Information
Aims, contents and method of the course
Study practically relevant aspects of operations research including in particular the consideration of uncertain input data (stochastic optimization, robust optimization)
Assessment and permitted materials
written exam, blackboard exercises
Minimum requirements and assessment criteria
This course should help graduate students to:
a) develop mathematical models for (real world) optimization problems
b) apply different concepts to treat uncertain input data in optimization and understand the consequences implied by choosing on of these techniques
a) develop mathematical models for (real world) optimization problems
b) apply different concepts to treat uncertain input data in optimization and understand the consequences implied by choosing on of these techniques
Examination topics
Reading list
Association in the course directory
Last modified: Mo 07.09.2020 15:28