040172 VU Doing Data Science (MA) (2023W)
Continuous assessment of course work
Labels
ON-SITE
The course language is English.Only students who signed up for the class in univis/u:space are allowed to take the class (that means, that you have to at least be on the waiting list if you want to take this class). No exceptions possible.
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
- Registration is open from Mo 11.09.2023 09:00 to Fr 22.09.2023 12:00
- Registration is open from Tu 26.09.2023 09:00 to We 27.09.2023 12:00
- Deregistration possible until Fr 20.10.2023 23:59
Details
max. 80 participants
Language: English
Lecturers
Classes (iCal) - next class is marked with N
- Tuesday 03.10. 13:15 - 16:30 Seminarraum 5, Kolingasse 14-16, EG00
- Wednesday 04.10. 15:00 - 16:30 Seminarraum 5, Kolingasse 14-16, EG00
- Tuesday 10.10. 13:15 - 16:30 Seminarraum 5, Kolingasse 14-16, EG00
- Wednesday 11.10. 15:00 - 16:30 Seminarraum 5, Kolingasse 14-16, EG00
- Tuesday 17.10. 13:15 - 16:30 Seminarraum 5, Kolingasse 14-16, EG00
- Wednesday 18.10. 15:00 - 16:30 Seminarraum 5, Kolingasse 14-16, EG00
- Tuesday 24.10. 13:15 - 16:30 Seminarraum 5, Kolingasse 14-16, EG00
- Wednesday 25.10. 15:00 - 16:30 Seminarraum 5, Kolingasse 14-16, EG00
- Tuesday 31.10. 13:15 - 16:30 Seminarraum 5, Kolingasse 14-16, EG00
- Tuesday 07.11. 13:15 - 16:30 Seminarraum 5, Kolingasse 14-16, EG00
-
Wednesday
08.11.
15:00 - 16:30
Hörsaal 6 Oskar-Morgenstern-Platz 1 1.Stock
Seminarraum 5, Kolingasse 14-16, EG00 - Tuesday 14.11. 13:15 - 16:30 Seminarraum 5, Kolingasse 14-16, EG00
- Wednesday 15.11. 15:00 - 16:30 Seminarraum 5, Kolingasse 14-16, EG00
- Tuesday 21.11. 13:15 - 16:30 Seminarraum 5, Kolingasse 14-16, EG00
- Wednesday 22.11. 15:00 - 16:30 Seminarraum 5, Kolingasse 14-16, EG00
- Tuesday 28.11. 13:15 - 16:30 Seminarraum 5, Kolingasse 14-16, EG00
- Wednesday 29.11. 15:00 - 16:30 Seminarraum 5, Kolingasse 14-16, EG00
- Tuesday 05.12. 13:15 - 16:30 Seminarraum 5, Kolingasse 14-16, EG00
- Wednesday 06.12. 15:00 - 16:30 Seminarraum 5, Kolingasse 14-16, EG00
- Tuesday 12.12. 13:15 - 16:30 Seminarraum 5, Kolingasse 14-16, EG00
- Wednesday 13.12. 15:00 - 16:30 Seminarraum 5, Kolingasse 14-16, EG00
- Tuesday 09.01. 13:15 - 16:30 Seminarraum 5, Kolingasse 14-16, EG00
- Wednesday 10.01. 15:00 - 16:30 Seminarraum 5, Kolingasse 14-16, EG00
- Tuesday 16.01. 13:15 - 16:30 Seminarraum 5, Kolingasse 14-16, EG00
- Wednesday 17.01. 15:00 - 16:30 Seminarraum 5, Kolingasse 14-16, EG00
- Tuesday 23.01. 13:15 - 16:30 Seminarraum 5, Kolingasse 14-16, EG00
- Wednesday 24.01. 15:00 - 16:30 Seminarraum 5, Kolingasse 14-16, EG00
- Tuesday 30.01. 13:15 - 16:30 Seminarraum 5, Kolingasse 14-16, EG00
- Wednesday 31.01. 15:00 - 16:30 Seminarraum 5, Kolingasse 14-16, EG00
Information
Aims, contents and method of the course
Assessment and permitted materials
Midterm test (30%): Nov 8, 15:00-16:00, allowed is only a calculator.
Final test (30%): Dec 6, 15:00-16:00, allowed is only a calculator.
Project work (40%):
- Review meetings: Dec 12, 15:00-16:30
- Posters and videos due: Jan 21, 23:59
- Final presentations: Jan 23, 13:15-14:45, and Jan 24, 15:00-16:30The use of AI tools (e.g. ChatGPT) for the handling of tasks is only permitted if they are expressly requested by the course leader (e.g. for individual work tasks).
Final test (30%): Dec 6, 15:00-16:00, allowed is only a calculator.
Project work (40%):
- Review meetings: Dec 12, 15:00-16:30
- Posters and videos due: Jan 21, 23:59
- Final presentations: Jan 23, 13:15-14:45, and Jan 24, 15:00-16:30The use of AI tools (e.g. ChatGPT) for the handling of tasks is only permitted if they are expressly requested by the course leader (e.g. for individual work tasks).
Minimum requirements and assessment criteria
For midterm and final test as well as project work, attendance is mandatory, including kick-off and project presentations.In total, 100 points can be achieved. Grades are assigned as follows:
[88,100]: 1
[76,88[ : 2
[63,76[ : 3
[50,63[ : 4
< 50 : 5
[88,100]: 1
[76,88[ : 2
[63,76[ : 3
[50,63[ : 4
< 50 : 5
Examination topics
Midterm test/Final test: Slides and topics covered in the lectures.
Project work: topic-specific poster presentation, handout, KNIME workflow.
Project work: topic-specific poster presentation, handout, KNIME workflow.
Reading list
Provost, Foster; Fawcett, Tom (2013): Data Science for Business. What you need to know about data mining and data-analytic thinking. Köln: O`Reilly.
Berthold, Michael R.; Borgelt, Christian; Höppner, Frank; Klawonn, Frank; Silipo, Rosaria (2020): Guide to Intelligent Data Science. Cham: Springer International Publishing.
Berthold, Michael R.; Borgelt, Christian; Höppner, Frank; Klawonn, Frank; Silipo, Rosaria (2020): Guide to Intelligent Data Science. Cham: Springer International Publishing.
Association in the course directory
Last modified: We 24.01.2024 12:25
This course consists of lectures, tutorials, showcases, and project presentations. Students will work on their own data science projects in interdisciplinary groups.