Warning! The directory is not yet complete and will be amended until the beginning of the term.
040195 KU Data Analysis on Organization and Personnel (MA) (2022W)
Continuous assessment of course work
Labels
ON-SITE
Summary
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
- Registration is open from Mo 12.09.2022 09:00 to Fr 23.09.2022 12:00
- Registration is open from We 28.09.2022 09:00 to Th 29.09.2022 12:00
- Deregistration possible until Fr 14.10.2022 23:59
Registration information is available for each group.
Groups
Group 1
service email address: opim.bda@univie.ac.at
max. 50 participants
Language: English
LMS: Moodle
Lecturers
Classes (iCal) - next class is marked with N
- Tuesday 04.10. 13:15 - 14:45 PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß
- Tuesday 11.10. 13:15 - 14:45 PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß
- Tuesday 18.10. 13:15 - 14:45 PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß
- Tuesday 25.10. 13:15 - 14:45 PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß
- Tuesday 08.11. 13:15 - 14:45 PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß
- Tuesday 15.11. 13:15 - 14:45 PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß
- Tuesday 22.11. 13:15 - 14:45 PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß
- Tuesday 29.11. 13:15 - 14:45 PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß
- Tuesday 06.12. 13:15 - 14:45 PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß
- Thursday 15.12. 13:15 - 14:45 PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß
- Tuesday 10.01. 13:15 - 14:45 PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß
- Tuesday 17.01. 13:15 - 14:45 PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß
- Tuesday 24.01. 13:15 - 14:45 PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß
- Tuesday 31.01. 13:15 - 14:45 PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß
Aims, contents and method of the course
Assessment and permitted materials
The final grade will be based on assignments, group presentation (may be substituted with assignments), and active in class participation. Attendance during the lectures is mandatory.• Assignments (60%)
• Group presentation (30%) (may be substituted with additional assignments)
• Participation (10%).
• Group presentation (30%) (may be substituted with additional assignments)
• Participation (10%).
Group 2
service email address: opim.bda@univie.ac.at
max. 50 participants
Language: English
LMS: Moodle
Lecturers
Classes (iCal) - next class is marked with N
- Monday 07.11. 11:30 - 13:00 Hörsaal 15 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 14.11. 09:45 - 13:00 PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß
- Wednesday 16.11. 09:45 - 13:00 PC-Seminarraum 3 Oskar-Morgenstern-Platz 1 1.Untergeschoß
- Monday 21.11. 09:45 - 13:00 PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß
- Wednesday 23.11. 09:45 - 13:00 PC-Seminarraum 3 Oskar-Morgenstern-Platz 1 1.Untergeschoß
- Monday 09.01. 09:45 - 13:00 PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß
- Wednesday 11.01. 09:45 - 13:00 PC-Seminarraum 3 Oskar-Morgenstern-Platz 1 1.Untergeschoß
- Monday 16.01. 09:45 - 13:00 PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß
- Wednesday 18.01. 09:45 - 13:00 PC-Seminarraum 3 Oskar-Morgenstern-Platz 1 1.Untergeschoß
- Wednesday 25.01. 15:00 - 16:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
Aims, contents and method of the course
Summary: “This course emphasizes statistical methods for analyzing data used by social scientists. Topics include simple and multiple regression analyses and the various methods of detecting and correcting data problems.”Goal: Upon completion of the course, students will be able to undertake regression analysis and inference on a variety of hypotheses involving cross-sectional and time series data.This course introduces students to regression tools for analyzing data in economics, finance and related disciplines. Extensions include regression with discrete random variables, instrumental variables regression, quasi-experiments, and regression with time series data. The objective of the course is for the student to learn how to conduct – and how to critique – empirical studies in economics, finance and related fields. Accordingly, the emphasis of the course is on empirical applications. The mathematics of econometrics will be introduced only as needed and will not be a central focus.
Assessment and permitted materials
The final grade will be based on assignments, group presentation (may be substituted with assignments), and active in class participation. Attendance during the lectures is mandatory.
• Assignments (60%)
• Group presentation (30%) (may be substituted with additional assignments)
• Participation (10%).
• Assignments (60%)
• Group presentation (30%) (may be substituted with additional assignments)
• Participation (10%).
Information
Minimum requirements and assessment criteria
1 (sehr gut) → 100-89 poins
2 (gut) → 88-76 poins
3 (befriedigend) → 75-63 poins
4 (genügend) → 62-50 poins
5 (nicht genügend) → 49-0 poins
2 (gut) → 88-76 poins
3 (befriedigend) → 75-63 poins
4 (genügend) → 62-50 poins
5 (nicht genügend) → 49-0 poins
Examination topics
Topics discussed in class with focus on application of statistical methods.
Reading list
Hair et al. (2013) Multivariate Data Analysis. Pearson
Wooldridge „Introductory Econometrics“
– Chapters 1-8, 15, 17
Peter Kennedy „A guide to Econometrics“
– Chapters 1-12, 16, 17
Kohler/Kreuter „Data Analysis using Stata“
– Chapter 8 and 9
Wooldridge „Introductory Econometrics“
– Chapters 1-8, 15, 17
Peter Kennedy „A guide to Econometrics“
– Chapters 1-12, 16, 17
Kohler/Kreuter „Data Analysis using Stata“
– Chapter 8 and 9
Association in the course directory
Last modified: Tu 06.12.2022 12:48
The aim of this course is to provide participants with an understanding of the quantitative research process from hypotheses development to testing the hypotheses with the appropriate statistical methods.Goal: Upon completion of the course, participants should be able to conduct their own study and analyses data sets with a variety of statistical methods. Discussed topics include:• Developing and testing hypotheses
• Introduction to univariate and multivariate methods
• Analysis of variance
• Regression analysisThe emphasis is on empirical applications and the mathematics of econometric will be introduced only as needed.Goal: Upon completion of the course, students will be able to undertake regression analysis and inference on a variety of hypotheses involving cross-sectional and time series data.
This course introduces students to regression tools for analyzing data in economics, finance and related disciplines. Extensions include regression with discrete random variables, instrumental variables regression, quasi-experiments, and regression with time series data. The objective of the course is for the student to learn how to conduct – and how to critique – empirical studies in economics, finance and related fields. Accordingly, the emphasis of the course is on empirical applications. The mathematics of econometrics will be introduced only as needed and will not be a central focus.