Universität Wien
Warning! The directory is not yet complete and will be amended until the beginning of the term.

040242 VO Econometrics and Statistics (MA) (2021W)

4.00 ECTS (2.00 SWS), SPL 4 - Wirtschaftswissenschaften
REMOTE

Registration/Deregistration

Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).

Details

Language: German

Examination dates

Lecturers

Classes (iCal) - next class is marked with N

At the first appointment on October 5th I will give a short introduction and a recapitulation of basic statistical terms.

From then on, the material for each lecture, consisting of a set of slides and audio description, will be published one week before the meeting.

During the appointment we will then discuss your open questions and discuss examples related to the material.

  • Tuesday 05.10. 08:00 - 09:30 Digital
  • Tuesday 12.10. 08:00 - 09:30 Digital
  • Tuesday 19.10. 08:00 - 09:30 Digital
  • Tuesday 09.11. 08:00 - 09:30 Digital
  • Tuesday 16.11. 08:00 - 09:30 Digital
  • Tuesday 23.11. 08:00 - 09:30 Digital
  • Tuesday 30.11. 08:00 - 09:30 Digital
  • Tuesday 07.12. 08:00 - 09:30 Digital
  • Tuesday 14.12. 08:00 - 09:30 Digital
  • Tuesday 11.01. 08:00 - 09:30 Digital
  • Tuesday 18.01. 08:00 - 09:30 Digital
  • Tuesday 25.01. 08:00 - 09:30 Digital

Information

Aims, contents and method of the course

Datamining and big data based on case studies

During the course we will learn and discuss concepts of data mining and big data using case studies.

The case studies will cover areas such as

. Customer Relationship Management
. Fraud Detection
. Revenue Management
. Market Research

The presented concepts of data-naming and big data will include i.a.

. Sampling
. Supervised und unsupervised learning
. Multiple Regression,
. Logistic Regression
. Statistical Analysis of Frequency Data
. Analysis of variance
. Time series analysis

Assessment and permitted materials

Final test at the end of the course, Written Exam

If possible, the test is carried out as a face-to-face test personally at the University campus

Minimum requirements and assessment criteria

To pass this course you have to attain min 60% of the total points.

Examination topics

1) Analyze a given Problem and sketch a solution with Datamining methods
2) Describe the steps of a standard analysis
3) Understand (= be able to read and Interpret) statistical model equations
and statistical Reports

More Details about the exam will be given during the course.
Analyze a given Problem and sketch a solution with Datamining methods

Understand (= be able to read and Interpret) statistical model equations
and Datamining concepts

More Details about the exam will be given during the course.

Reading list

Werner Brannath, Andreas Futschik, Statistik für Wirtschaftswissenschaftler

Weitere Literatur wird während der Vorlesung bekannt gegeben.

Folien, die im Kurs diskutiert werden (werden auf der Homepage veröffentlicht).

Association in the course directory

Last modified: Fr 12.05.2023 00:12