Warning! The directory is not yet complete and will be amended until the beginning of the term.
040242 VO Data Analytics (MA) (2024W)
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
Language: German
Examination dates
-
N
Wednesday
05.02.2025
16:45 - 18:15
Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
Hörsaal 6 Oskar-Morgenstern-Platz 1 1.Stock -
Wednesday
26.02.2025
16:45 - 18:15
Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
Hörsaal 6 Oskar-Morgenstern-Platz 1 1.Stock - Wednesday 07.05.2025 15:00 - 16:30 Hörsaal 14 Oskar-Morgenstern-Platz 1 2.Stock
Lecturers
Classes (iCal) - next class is marked with N
- Wednesday 02.10. 15:00 - 16:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 09.10. 15:00 - 16:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 16.10. 15:00 - 16:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 23.10. 15:00 - 16:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 30.10. 15:00 - 16:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 06.11. 15:00 - 16:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 20.11. 15:00 - 16:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 27.11. 15:00 - 16:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 04.12. 15:00 - 16:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 11.12. 15:00 - 16:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 08.01. 15:00 - 16:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 15.01. 15:00 - 16:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- N Wednesday 22.01. 15:00 - 16:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
Information
Aims, contents and method of the course
Assessment and permitted materials
Final test at the end of the course, Written ExamThe test is carried out as a face-to-face test personally at the University campus
Minimum requirements and assessment criteria
To pass this course you have to attain min 60% of the total points during the written exam.
Examination topics
1) Analyze a given Problem and sketch a solution with Datamining methods
2) Describe the steps of a standard analysis
3) Understand (= be able to read and Interpret) statistical model equations
and statistical ReportsMore Details about the exam will be given during the course.
Analyze a given Problem and sketch a solution with Datamining methodsUnderstand (= be able to read and Interpret) statistical model equations
and Datamining conceptsMore Details about the exam will be given during the course.
2) Describe the steps of a standard analysis
3) Understand (= be able to read and Interpret) statistical model equations
and statistical ReportsMore Details about the exam will be given during the course.
Analyze a given Problem and sketch a solution with Datamining methodsUnderstand (= be able to read and Interpret) statistical model equations
and Datamining conceptsMore Details about the exam will be given during the course.
Reading list
Werner Brannath, Andreas Futschik, Statistik für WirtschaftswissenschaftlerWeitere Literatur wird während der Vorlesung bekannt gegeben.Folien, die im Kurs diskutiert werden (werden auf der Homepage veröffentlicht).
Association in the course directory
Last modified: Th 09.01.2025 10:45
. Fraud Detection
. Revenue Management
. Market ResearchThe presented concepts of data-naming and big data will include i.a.. Multiple Regression,
. Logistic Regression
. Statistical Analysis of Frequency Data
. Analysis of variance
. Time series analysis