040309 VU Doing Data Science (MA) (2022S)
Continuous assessment of course work
Labels
MIXED
The course language is English.Only students who signed up for the class in univis/u:space are allowed to take the class (that means, that you have to at least be on the waiting list if you want to take this class). No exceptions possible.
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
- Registration is open from Mo 07.02.2022 09:00 to Mo 21.02.2022 23:59
- Registration is open from Th 24.02.2022 09:00 to Fr 25.02.2022 23:59
- Deregistration possible until Mo 14.03.2022 23:59
Details
max. 40 participants
Language: English
Lecturers
Classes (iCal) - next class is marked with N
This class will be offered in hybrid form. There will be lecture videos that students are expected to watch and discuss. All live appointments will be streamed through Moodle/Zoom. First meeting: Tuesday, March 1st, 13:15-14:45, SR1, Kolingasse 14-16.
-
Tuesday
01.03.
13:15 - 14:45
Hybride Lehre
PC-Seminarraum 1, Kolingasse 14-16, OG01 -
Wednesday
02.03.
15:00 - 16:30
Hybride Lehre
PC-Seminarraum 1, Kolingasse 14-16, OG01 -
Tuesday
08.03.
13:15 - 14:45
Hybride Lehre
PC-Seminarraum 1, Kolingasse 14-16, OG01 -
Wednesday
09.03.
15:00 - 16:30
Hybride Lehre
PC-Seminarraum 1, Kolingasse 14-16, OG01 -
Tuesday
15.03.
13:15 - 14:45
Hybride Lehre
PC-Seminarraum 1, Kolingasse 14-16, OG01 -
Wednesday
16.03.
15:00 - 16:30
Hybride Lehre
PC-Seminarraum 1, Kolingasse 14-16, OG01 -
Tuesday
22.03.
13:15 - 14:45
Hybride Lehre
PC-Seminarraum 1, Kolingasse 14-16, OG01 -
Wednesday
23.03.
15:00 - 16:30
Hybride Lehre
PC-Seminarraum 1, Kolingasse 14-16, OG01 -
Tuesday
29.03.
13:15 - 14:45
Hybride Lehre
PC-Seminarraum 1, Kolingasse 14-16, OG01 -
Wednesday
30.03.
15:00 - 16:30
Hybride Lehre
PC-Seminarraum 1, Kolingasse 14-16, OG01 -
Tuesday
05.04.
13:15 - 14:45
Hybride Lehre
PC-Seminarraum 1, Kolingasse 14-16, OG01 -
Wednesday
06.04.
15:00 - 16:30
Hybride Lehre
PC-Seminarraum 1, Kolingasse 14-16, OG01 -
Tuesday
26.04.
13:15 - 14:45
Hybride Lehre
PC-Seminarraum 1, Kolingasse 14-16, OG01 -
Wednesday
27.04.
15:00 - 16:30
Hybride Lehre
PC-Seminarraum 1, Kolingasse 14-16, OG01 -
Tuesday
03.05.
13:15 - 14:45
Hybride Lehre
PC-Seminarraum 1, Kolingasse 14-16, OG01 -
Wednesday
04.05.
15:00 - 16:30
Hybride Lehre
PC-Seminarraum 1, Kolingasse 14-16, OG01 -
Tuesday
10.05.
13:15 - 14:45
Hybride Lehre
PC-Seminarraum 1, Kolingasse 14-16, OG01 -
Wednesday
11.05.
15:00 - 16:30
Hybride Lehre
PC-Seminarraum 1, Kolingasse 14-16, OG01 -
Tuesday
17.05.
13:15 - 14:45
Hybride Lehre
PC-Seminarraum 1, Kolingasse 14-16, OG01 -
Wednesday
18.05.
15:00 - 16:30
Hybride Lehre
PC-Seminarraum 1, Kolingasse 14-16, OG01 -
Tuesday
24.05.
13:15 - 14:45
Hybride Lehre
PC-Seminarraum 1, Kolingasse 14-16, OG01 -
Wednesday
25.05.
15:00 - 16:30
Hybride Lehre
PC-Seminarraum 1, Kolingasse 14-16, OG01 -
Tuesday
31.05.
13:15 - 14:45
Hybride Lehre
PC-Seminarraum 1, Kolingasse 14-16, OG01 -
Wednesday
01.06.
15:00 - 16:30
Digital
Hybride Lehre -
Wednesday
08.06.
15:00 - 16:30
Hybride Lehre
PC-Seminarraum 1, Kolingasse 14-16, OG01 -
Tuesday
14.06.
13:15 - 14:45
Hybride Lehre
PC-Seminarraum 1, Kolingasse 14-16, OG01 -
Wednesday
15.06.
15:00 - 16:30
Hybride Lehre
PC-Seminarraum 1, Kolingasse 14-16, OG01 -
Tuesday
21.06.
13:15 - 14:45
Hybride Lehre
PC-Seminarraum 1, Kolingasse 14-16, OG01 -
Wednesday
22.06.
15:00 - 16:30
Hybride Lehre
PC-Seminarraum 1, Kolingasse 14-16, OG01 -
Tuesday
28.06.
13:15 - 14:45
Hybride Lehre
PC-Seminarraum 1, Kolingasse 14-16, OG01 -
Wednesday
29.06.
15:00 - 16:30
Hybride Lehre
PC-Seminarraum 1, Kolingasse 14-16, OG01
Information
Aims, contents and method of the course
This course covers the fundamentals of setting up, managing, and conducting data science projects. Students acquire knowledge of processes describing how to approach and implement data science projects. They know the particular steps of the CRISP industry-standard, learn about various cases of how to apply this to different applications (from different areas such as business, humanities, astronomy), and are able to conduct data science projects themselves.This course consists of lectures, tutorials, showcases, and project presentations. Students will work on their own data science projects in interdisciplinary groups.
Assessment and permitted materials
Midterm test (30%): March 30, 15:00
Final test (30%): May 17, 13:15
Project work (40%):
- Review meetings: May 24, 15:00
- Final presentations: **June 22, 15:00**
Final test (30%): May 17, 13:15
Project work (40%):
- Review meetings: May 24, 15:00
- Final presentations: **June 22, 15:00**
Minimum requirements and assessment criteria
For project work, attendance is mandatory, including kick-off and project presentations.In total, 100 points can be achieved. Grades are assigned as follows:
In total, 100 points can be achieved. Grades are assigned as follows:
[88,100]: 1
[76,88[ : 2
[63,76[ : 3
[50,63[ : 4
< 50 : 5
In total, 100 points can be achieved. Grades are assigned as follows:
[88,100]: 1
[76,88[ : 2
[63,76[ : 3
[50,63[ : 4
< 50 : 5
Examination topics
Midterm test/Final test: Slides and topics covered in the lectures.
Project work: topic-specific poster presentation, handout, KNIME workflow.
Project work: topic-specific poster presentation, handout, KNIME workflow.
Reading list
Provost, Foster; Fawcett, Tom (2013): Data Science for Business. What you need to know about data mining and data-analytic thinking. Köln: O`Reilly.Berthold, Michael R.; Borgelt, Christian; Höppner, Frank; Klawonn, Frank; Silipo, Rosaria (2020): Guide to Intelligent Data Science. Cham: Springer International Publishing.
Association in the course directory
Last modified: Th 11.05.2023 11:27