Universität Wien
Warning! The directory is not yet complete and will be amended until the beginning of the term.

040646 VK KFK IV: Implementing Derivative Models (2009W)

8.00 ECTS (4.00 SWS), SPL 4 - Wirtschaftswissenschaften
Continuous assessment of course work

Registration/Deregistration

Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).

Details

max. 50 participants
Language: English

Lecturers

Classes (iCal) - next class is marked with N

  • Saturday 10.10. 09:00 - 13:00 EDV-Labor 6
  • Saturday 17.10. 09:00 - 13:00 EDV-Labor 6
  • Tuesday 20.10. 16:00 - 17:00 Hörsaal 8
  • Saturday 24.10. 09:00 - 13:00 EDV-Labor 6
  • Saturday 31.10. 09:00 - 13:00 EDV-Labor 6
  • Saturday 07.11. 09:00 - 13:00 EDV-Labor 6
  • Saturday 14.11. 09:00 - 13:00 EDV-Labor 6
  • Saturday 21.11. 09:00 - 13:00 EDV-Labor 6
  • Saturday 28.11. 09:00 - 13:00 EDV-Labor 6
  • Saturday 05.12. 09:00 - 13:00 EDV-Labor 6
  • Saturday 12.12. 09:00 - 13:00 EDV-Labor 6
  • Saturday 19.12. 09:00 - 13:00 EDV-Labor 6
  • Saturday 09.01. 09:00 - 13:00 EDV-Labor 6
  • Saturday 16.01. 09:00 - 13:00 EDV-Labor 6
  • Saturday 23.01. 09:00 - 13:00 EDV-Labor 6
  • Saturday 30.01. 09:00 - 13:00 EDV-Labor 6

Information

Aims, contents and method of the course


  • Monte Carlo simulation

    • Variance reduction: antithetic variables, control variates, importance sampling

    • Random number generation



  • Lattice methods

    • Binomial

    • Trinomial



  • Finite difference methods

    • Explicit finite differences

    • Implicit finite differences

    • Crank-Nicolson method



  • Implied trees

  • Interest rate models

    • Black-Derman-Toy

    • Hull and White




Assessment and permitted materials

Homework assignments (50 %) and final test (50 %).

Minimum requirements and assessment criteria

This course will give an understanding of numerical methods for practically dealing with two fundamental concepts - stochastic processes and partial differential equations - for modelling derivative financial products. Numerical techniques are essential in many cases of (exotic) instruments where analytical formulas do not exist.

Target group: Students of finance interested in computational aspects of derivatives pricing as well as students of computer science and business informatics interested in financial applications.
Numerical methods will be implemented in Visual Basic (participants are free to use a different programming language, such as C, Java, Fortran, Pascal).

Examination topics

Participants will learn how to implement these methods through writing computer programs in a high level programming language (Visual Basic), and to apply them for the calculation of prices of derivative instruments.

Reading list

* S. Benninga. Financial Modeling. MIT-Press, 2008.
* L. Clewlow and C. Strickland. Implementing Derivatives Models. Wiley, 1998.
* P. Glasserman. Monte Carlo Methods in Financial Engineering. Springer, 2004.
* J.C. Hull. Options, Futures, and other Derivatives. Prentice Hall, 2008.
* P. G. Zhang. Exotic Options: A Guide to Second Generation Options (2nd Edition). World Scientific, 2006.

Association in the course directory

Last modified: Mo 07.09.2020 15:29