040676 KU Metaheuristics (MA) (2023S)
Continuous assessment of course work
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
- Registration is open from Mo 13.02.2023 09:00 to We 22.02.2023 12:00
- Registration is open from Mo 27.02.2023 09:00 to Tu 28.02.2023 12:00
- Deregistration possible until Fr 17.03.2023 23:59
Details
max. 30 participants
Language: English
Lecturers
Classes (iCal) - next class is marked with N
- Wednesday 01.03. 11:30 - 13:00 PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß
- Wednesday 08.03. 11:30 - 13:00 PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß
- Wednesday 15.03. 11:30 - 13:00 PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß
- Wednesday 22.03. 11:30 - 13:00 PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß
- Wednesday 29.03. 11:30 - 13:00 PC-Seminarraum 3 Oskar-Morgenstern-Platz 1 1.Untergeschoß
- Wednesday 19.04. 11:30 - 13:00 PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß
- Wednesday 26.04. 11:30 - 13:00 PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß
- Wednesday 03.05. 11:30 - 13:00 PC-Seminarraum 3 Oskar-Morgenstern-Platz 1 1.Untergeschoß
- Wednesday 10.05. 11:30 - 13:00 PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß
-
Wednesday
17.05.
11:30 - 13:00
Hörsaal 9 Oskar-Morgenstern-Platz 1 1.Stock
PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß - Wednesday 24.05. 11:30 - 13:00 PC-Seminarraum 3 Oskar-Morgenstern-Platz 1 1.Untergeschoß
- Wednesday 31.05. 11:30 - 13:00 PC-Seminarraum 3 Oskar-Morgenstern-Platz 1 1.Untergeschoß
- Wednesday 07.06. 11:30 - 13:00 PC-Seminarraum 3 Oskar-Morgenstern-Platz 1 1.Untergeschoß
- Wednesday 14.06. 11:30 - 13:00 PC-Seminarraum 3 Oskar-Morgenstern-Platz 1 1.Untergeschoß
- Wednesday 21.06. 11:30 - 13:00 PC-Seminarraum 3 Oskar-Morgenstern-Platz 1 1.Untergeschoß
- Wednesday 28.06. 11:30 - 13:00 PC-Seminarraum 3 Oskar-Morgenstern-Platz 1 1.Untergeschoß
Information
Aims, contents and method of the course
Assessment and permitted materials
* [45%] Exam
- 90 minutes
- pen-and-paper, closed book
* [45%] Project work (choose one):
- Mini-Coding-Project: implement a metaheuristic for an optimization problem
- Literature work: read a scientific article, summarize, analyze, and criticize it
* [10%] Oral presentation of project
- 90 minutes
- pen-and-paper, closed book
* [45%] Project work (choose one):
- Mini-Coding-Project: implement a metaheuristic for an optimization problem
- Literature work: read a scientific article, summarize, analyze, and criticize it
* [10%] Oral presentation of project
Minimum requirements and assessment criteria
In order to obtain a positive grade on the course, at least 50% of the overall points have to be achieved. The grades are distributed as follows:
1: 87% to 100%
2: 75% to <87%
3: 63% to <75%
4: 50% to <63%
5: <50%
1: 87% to 100%
2: 75% to <87%
3: 63% to <75%
4: 50% to <63%
5: <50%
Examination topics
* Analysis of algorithms and complexity theory (basics)
* Local search methods
* Nature-inspired metaheuristics
* Construction-based metaheuristics
* Local search methods
* Nature-inspired metaheuristics
* Construction-based metaheuristics
Reading list
* Handbook of Metaheuristics, Michel Gendreau & Jean-Yves Potvin, International Series in Operations Research & Management Science, Springer, ISBN 978-3-319-91085-7
* Handbook of Metaheuristics, Fred Glover & Gary A. Kochenberger, Kluwer’s International Series, ISBN 1-4020-7263-5
* Stochastic Local Search, Foundations and Applications, Holger H. Hoos & Thomas Stützle, Elsevier, ISBN 1-55860-872-9
* Search Methodologies, Introductory Tutorials in Optimization and Decision Support Techniques, Edmund K. Burke & Graham Kendall, Springer, ISBN 0-387-23460-8
* Handbook of Metaheuristics, Fred Glover & Gary A. Kochenberger, Kluwer’s International Series, ISBN 1-4020-7263-5
* Stochastic Local Search, Foundations and Applications, Holger H. Hoos & Thomas Stützle, Elsevier, ISBN 1-55860-872-9
* Search Methodologies, Introductory Tutorials in Optimization and Decision Support Techniques, Edmund K. Burke & Graham Kendall, Springer, ISBN 0-387-23460-8
Association in the course directory
Last modified: Tu 14.03.2023 11:28
Metaheuristics are particularly attractive in the efficient and effective solution of logistic decision problems in supply chains, transportation, telecommunications, vehicle routing and scheduling, manufacturing and machine scheduling, timetabling, sports scheduling, facility location and layout, and network design, among other areas.The objective of this course is to provide students with the fundamental tools for designing, tuning, and testing heuristics and metaheuristics for hard combinatorial optimization problems. Besides that, we will also cover the fundamental concepts of complexity theory that are the key to understanding the need for approximate approaches and to design efficient heuristics and metaheuristics. The outline of the covered topics will be:
1. A gentle introduction to the analysis of algorithms and complexity theory
2. Historical and modern local search methods
3. Nature-inspired metaheuristics
4. Construction-based metaheuristicsFor assessment, students will have to do a project work (in groups of up to 3 people), which they also have to present, and there will be an exam.The course will be structured as follows:
* 8 lectures (mainly presentation by lecturer with some interactive elements, 01.03.–03.05.2023)
* 1 Q&A-Session (10.05.2023)
* 1 Exam (17.05.2023)
* 2 dates for project work presentations (14.06. & 21.06.2023)
* Deadline for handing in the project work: 28.06.2023