Warning! The directory is not yet complete and will be amended until the beginning of the term.
040688 UK Stochastic Processes (2019S)
Continuous assessment of course work
Labels
Inhalte, Ziele, Methoden, Leistungskontrolle siehe Homepage von I.Klein
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
- Registration is open from Mo 11.02.2019 09:00 to We 20.02.2019 12:00
- Deregistration possible until Th 14.03.2019 23:59
Details
max. 50 participants
Language: English
Lecturers
Classes (iCal) - next class is marked with N
- Tuesday 05.03. 13:15 - 14:45 Seminarraum 14 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 19.03. 13:15 - 14:45 Seminarraum 14 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 26.03. 13:15 - 14:45 Seminarraum 14 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 02.04. 13:15 - 14:45 Seminarraum 14 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 09.04. 13:15 - 14:45 Seminarraum 14 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 12.04. 09:45 - 11:15 Seminarraum 14 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 30.04. 13:15 - 14:45 Seminarraum 14 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 07.05. 13:15 - 14:45 Seminarraum 14 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 14.05. 13:15 - 14:45 Seminarraum 14 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 21.05. 13:15 - 14:45 Seminarraum 14 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 28.05. 13:15 - 14:45 Seminarraum 14 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 04.06. 13:15 - 14:45 Seminarraum 14 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 18.06. 13:15 - 14:45 Seminarraum 14 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 25.06. 13:15 - 14:45 Seminarraum 14 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
Introduction to stochastic processes in discrete time. Brownian motion as limit of random walks. Martingales. Stochastic integrals in discrete time. Applications to mathematical finance in discrete time. First steps towards a stochastic integral for Brownian motion. Method: Lecture, exercises on the blackboard, take home exercises
Assessment and permitted materials
Points are available in three forms: 1) Test (max 16 points), 2) Presentation (each max 2 points), 3) Take home exercises (max 20 points)
Minimum requirements and assessment criteria
>=18 points: 4
> 22 points: 3
> 27 points: 2
>=32 points: 1
> 22 points: 3
> 27 points: 2
>=32 points: 1
Examination topics
Everything that was done in lecture and exercises
Reading list
Literature used in and going beyond the course:P. Billingsley : Probability an measure, WileyD. Williams : Probability with martingales,
Cambridge University PressKaratzas, S. Shreve: Brownian Motion and Stochastic Calculus, Springer
Cambridge University PressKaratzas, S. Shreve: Brownian Motion and Stochastic Calculus, Springer
Association in the course directory
Last modified: Mo 07.09.2020 15:29