Universität Wien
Warning! The directory is not yet complete and will be amended until the beginning of the term.

040690 UK Generalized Linear Model (UK) (2022S)

4.00 ECTS (2.00 SWS), SPL 4 - Wirtschaftswissenschaften
Continuous assessment of course work

Summary

1 Kramlinger , Moodle
2 Kramlinger , Moodle

Registration/Deregistration

Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Registration information is available for each group.

Groups

Group 1

max. 35 participants
Language: German
LMS: Moodle

Lecturers

Classes (iCal) - next class is marked with N

Abschlusstest am 30.06.22 für beide Gruppen gemeinsam

  • Thursday 03.03. 16:45 - 18:15 Hörsaal 5 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Thursday 10.03. 16:45 - 18:15 Hörsaal 5 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Thursday 17.03. 16:45 - 18:15 Hörsaal 5 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Thursday 24.03. 16:45 - 18:15 Hörsaal 5 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Thursday 31.03. 16:45 - 18:15 Hörsaal 5 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Thursday 07.04. 16:45 - 18:15 Hörsaal 5 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Thursday 28.04. 16:45 - 18:15 Hörsaal 5 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Thursday 05.05. 16:45 - 18:15 Hörsaal 5 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Thursday 12.05. 16:45 - 18:15 Hörsaal 5 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Thursday 19.05. 16:45 - 18:15 Hörsaal 5 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Thursday 02.06. 16:45 - 18:15 Hörsaal 5 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Thursday 09.06. 16:45 - 18:15 Hörsaal 5 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Thursday 23.06. 16:45 - 18:15 Hörsaal 5 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Thursday 30.06. 16:45 - 18:15 Hörsaal 14 Oskar-Morgenstern-Platz 1 2.Stock

Group 2

max. 35 participants
Language: German
LMS: Moodle

Lecturers

Classes (iCal) - next class is marked with N

Abschlusstest am 30.06.22 für beide Gruppen gemeinsam

  • Thursday 03.03. 15:00 - 16:30 Hörsaal 7 Oskar-Morgenstern-Platz 1 1.Stock
  • Thursday 10.03. 15:00 - 16:30 Hörsaal 7 Oskar-Morgenstern-Platz 1 1.Stock
  • Thursday 17.03. 15:00 - 16:30 Hörsaal 7 Oskar-Morgenstern-Platz 1 1.Stock
  • Thursday 24.03. 15:00 - 16:30 Hörsaal 7 Oskar-Morgenstern-Platz 1 1.Stock
  • Thursday 31.03. 15:00 - 16:30 Hörsaal 7 Oskar-Morgenstern-Platz 1 1.Stock
  • Thursday 07.04. 15:00 - 16:30 Hörsaal 7 Oskar-Morgenstern-Platz 1 1.Stock
  • Thursday 28.04. 15:00 - 16:30 Hörsaal 7 Oskar-Morgenstern-Platz 1 1.Stock
  • Thursday 05.05. 15:00 - 16:30 Hörsaal 7 Oskar-Morgenstern-Platz 1 1.Stock
  • Thursday 12.05. 15:00 - 16:30 Hörsaal 7 Oskar-Morgenstern-Platz 1 1.Stock
  • Thursday 19.05. 15:00 - 16:30 Hörsaal 7 Oskar-Morgenstern-Platz 1 1.Stock
  • Thursday 02.06. 15:00 - 16:30 Hörsaal 7 Oskar-Morgenstern-Platz 1 1.Stock
  • Thursday 09.06. 15:00 - 16:30 Hörsaal 7 Oskar-Morgenstern-Platz 1 1.Stock
  • Thursday 23.06. 15:00 - 16:30 Hörsaal 7 Oskar-Morgenstern-Platz 1 1.Stock
  • Thursday 30.06. 16:45 - 18:15 Hörsaal 14 Oskar-Morgenstern-Platz 1 2.Stock

Information

Aims, contents and method of the course

This course covers advanced methods of regression analysis in three topics: Generalized linear models, mixed effect models and nonparametric regression.
Exercises on real data sets using R will provide a basic understanding of the theoretical and practical challenges of statistical modeling.

Assessment and permitted materials

There are two term papers, one on Topic 1 and one on Topics 2 and 3.
The first term paper will be made public on April 7th and is due by 11:59pm on April 24th.
The second term paper will be assigned on June 2nd and is due by June 22nd, 11:59pm.
Each will address theoretical and practical problems, the latter to be solved using R.
In addition, a written final exam will be given on June 30th in presence on the theoretical contents of the whole course.

Minimum requirements and assessment criteria

Up to 30 points are awarded for each term paper and up to 40 points for the final exam.
The grade is calculated according to the following scheme: 4 at 50 points, 3 at 63 points, 2 at 75 points, 1 at 87 points.

Examination topics

Topics covered in the lecture.

Reading list

Fahrmeir, Kneib, Lang (2007): Regression: Modelle, Methoden und Anwendungen
Dobson (2001): An introduction to generalised linear models
Nelder, McCullagh (1989): Generalised linear models
Galecki, Burzykowski (2013): Linear Mixed-Effects Models Using R

Association in the course directory

Last modified: Th 03.03.2022 16:08