Universität Wien
Warning! The directory is not yet complete and will be amended until the beginning of the term.

040721 UK Selected Topics in Statistics (2020W)

3.00 ECTS (2.00 SWS), SPL 4 - Wirtschaftswissenschaften
Continuous assessment of course work

Registration/Deregistration

Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).

Details

max. 20 participants
Language: English

Lecturers

Classes (iCal) - next class is marked with N

  • Thursday 08.10. 15:00 - 16:30 Seminarraum 16 Oskar-Morgenstern-Platz 1 3.Stock
  • Thursday 15.10. 15:00 - 16:30 Seminarraum 16 Oskar-Morgenstern-Platz 1 3.Stock
  • Thursday 22.10. 15:00 - 16:30 Seminarraum 16 Oskar-Morgenstern-Platz 1 3.Stock
  • Thursday 29.10. 15:00 - 16:30 Seminarraum 16 Oskar-Morgenstern-Platz 1 3.Stock
  • Thursday 05.11. 15:00 - 16:30 Seminarraum 16 Oskar-Morgenstern-Platz 1 3.Stock
  • Thursday 12.11. 15:00 - 16:30 Seminarraum 16 Oskar-Morgenstern-Platz 1 3.Stock
  • Thursday 19.11. 15:00 - 16:30 Seminarraum 16 Oskar-Morgenstern-Platz 1 3.Stock
  • Thursday 26.11. 15:00 - 16:30 Seminarraum 16 Oskar-Morgenstern-Platz 1 3.Stock
  • Thursday 03.12. 15:00 - 16:30 Seminarraum 16 Oskar-Morgenstern-Platz 1 3.Stock
  • Thursday 10.12. 15:00 - 16:30 Seminarraum 16 Oskar-Morgenstern-Platz 1 3.Stock
  • Thursday 17.12. 15:00 - 16:30 Seminarraum 16 Oskar-Morgenstern-Platz 1 3.Stock
  • Thursday 14.01. 15:00 - 16:30 Seminarraum 16 Oskar-Morgenstern-Platz 1 3.Stock
  • Thursday 21.01. 15:00 - 16:30 Seminarraum 16 Oskar-Morgenstern-Platz 1 3.Stock
  • Thursday 28.01. 15:00 - 16:30 Seminarraum 16 Oskar-Morgenstern-Platz 1 3.Stock

Information

Aims, contents and method of the course

Aims:
Get acquainted with concepts of Bayesian statistics: theoretical foundations, methodology and applications.
Learn how to implement computer based procedures.

Contents:
1. Decision Theory
2. Bayesian Estimation
3. Bayesian Testing
4. Metropolis Hastings Algorithm und Gibbs Sampler
5. Diagnosing Convergence

Methods:
Lectures with exercise sessions.
Lecture notes and data will be available on-line.
Students are supposed to code in statistical software.

Assessment and permitted materials

There is an oral exam on topics 1 to 3 and a written exam with programming part on your own computer on topics 4 and 5.
Both exams will take place in presence.
Additionally, there will be a homework to the topics 1 to 5.

Minimum requirements and assessment criteria

The final grade will be weighted as follows:
35% oral exam on topics 1 to 3
35% written exam on topics 4 and 5
30% homework on all topics 1 to 5

Examination topics

All topics covered in the lecture.

Reading list

Shao, J. (2003): Mathematical Statistics.
Robert, C. P. And Casella, G. (2004): Monte Carlo Statistical Methods.
Hoff, P. D. (2010): A First Course in Bayesian Statistical Methods.

Association in the course directory

Last modified: Mo 28.09.2020 15:27