Warning! The directory is not yet complete and will be amended until the beginning of the term.
040796 VO Advanced Analysis (2022W)
Labels
REMOTE
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
Language: German
Examination dates
- Tuesday 31.01.2023 09:45 - 11:15 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Friday 03.03.2023 11:30 - 13:00 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 16.06.2023 09:45 - 11:15 Hörsaal 12 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 29.09.2023 09:45 - 11:15 Hörsaal 12 Oskar-Morgenstern-Platz 1 2.Stock
Lecturers
Classes (iCal) - next class is marked with N
- Friday 07.10. 15:00 - 18:15 Digital
- Friday 14.10. 15:00 - 18:15 Digital
- Friday 21.10. 15:00 - 18:15 Digital
- Friday 28.10. 15:00 - 18:15 Digital
- Friday 04.11. 15:00 - 18:15 Digital
- Friday 11.11. 15:00 - 18:15 Digital
- Friday 18.11. 15:00 - 18:15 Digital
- Friday 25.11. 15:00 - 18:15 Digital
- Friday 02.12. 15:00 - 18:15 Digital
- Friday 09.12. 15:00 - 18:15 Digital
- Friday 16.12. 15:00 - 18:15 Digital
- Friday 13.01. 15:00 - 18:15 Digital
- Friday 20.01. 15:00 - 18:15 Digital
- Friday 27.01. 15:00 - 18:15 Digital
- Monday 30.01. 11:30 - 13:00 Hörsaal 5 Oskar-Morgenstern-Platz 1 Erdgeschoß
Information
Aims, contents and method of the course
Assessment and permitted materials
written exam, 90 min
Minimum requirements and assessment criteria
Let X be the number of points (the maximum is 24) you achieve at the written exam. Then your grade is computed as follows:X≤ 12: Nicht genügend
12< X≤ 15: Genügend
15< X≤ 18: Befriedigend
18< X≤ 21: Gut
21< X: Sehr gut
12< X≤ 15: Genügend
15< X≤ 18: Befriedigend
18< X≤ 21: Gut
21< X: Sehr gut
Examination topics
See contents above.
Reading list
Skriptum "Materialien zur Höheren Mathematik für Studierende der Statistik" von Immmanuel Bomze.
Association in the course directory
Last modified: Tu 05.09.2023 13:27
0. Basics of point set topology
- open, closed and compact subsets of metric spaces
- Heine-Borel theorem
- continuity and uniform continuity
- liminf and limsup
I. Numerical analysis
- basics (floating-point arithmetic,condition numbers, algorithms, error propagation)
- zeros and fixed-points of functions (contraction mappings, fixed-point iterations, Banach fixed-point theorem,
order of convergence, Newton's method, secant method, regula falsi)
- solving linear equations numerically (Jacobi, Gauß-Seidel)
- Cholesky decomposition
- Gershgorin circle theorem
- interpolation
--- polynomials: Lagrange, Neville, Newton, error estimate
--- rational functions
--- Hermite interpolation
--- spline interpolation
- approximation
--- Bernstein polynomials
--- Chebyshev polynomials
- numerical integration (Newton-Cotes formulas, error estimate)
II. Integration by substitution (multiple variables) with applications to statistics, like derivation
of densities of Chi^2-, t-, F-distribution)