Universität Wien
Warning! The directory is not yet complete and will be amended until the beginning of the term.

050035 VU Machine Learning (2015S)

Continuous assessment of course work

Registration/Deregistration

Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).

Details

max. 25 participants
Language: German

Lecturers

Classes (iCal) - next class is marked with N

  • Friday 06.03. 15:00 - 16:30 Hörsaal 3, Währinger Straße 29 3.OG
  • Friday 13.03. 15:00 - 16:30 Hörsaal 3, Währinger Straße 29 3.OG
  • Friday 20.03. 15:00 - 16:30 Hörsaal 3, Währinger Straße 29 3.OG
  • Friday 27.03. 15:00 - 16:30 Hörsaal 3, Währinger Straße 29 3.OG
  • Friday 17.04. 15:00 - 16:30 Hörsaal 3, Währinger Straße 29 3.OG
  • Friday 24.04. 15:00 - 16:30 Hörsaal 3, Währinger Straße 29 3.OG
  • Friday 08.05. 15:00 - 16:30 Hörsaal 3, Währinger Straße 29 3.OG
  • Friday 15.05. 15:00 - 16:30 Hörsaal 3, Währinger Straße 29 3.OG
  • Friday 22.05. 15:00 - 16:30 Hörsaal 3, Währinger Straße 29 3.OG
  • Friday 29.05. 15:00 - 16:30 Hörsaal 3, Währinger Straße 29 3.OG
  • Friday 05.06. 15:00 - 16:30 Hörsaal 3, Währinger Straße 29 3.OG
  • Friday 12.06. 15:00 - 16:30 Hörsaal 3, Währinger Straße 29 3.OG
  • Friday 19.06. 15:00 - 16:30 Hörsaal 3, Währinger Straße 29 3.OG
  • Friday 26.06. 15:00 - 16:30 Hörsaal 3, Währinger Straße 29 3.OG

Information

Aims, contents and method of the course

Basic methods in machine learning: Supervised Learning (classification): Naive Bayes, Classification Trees, Combination Methods, Support Vector Machine, Neural Networks, Genetic Algorithms; Unsupervised Learning (Cluster analysis): K-Means, SOM, Isomap, Model based Clustering

Assessment and permitted materials

Attandence of lectures, solving of practical exercises (50%), course feedback (10%), and a final test (40%)

Minimum requirements and assessment criteria

getting familiar with basic ideas in machine learning and application of the methods with Matlab, R and Python.

Examination topics

Lectures with parctical exercises, mainly by using Matlab, R and Python.

Reading list

Christopher M. Bishop, Pattern Recognition and Machine Learning, Springer 2007;
Hastie-Tibshirani-Friedman: The Elements of Statistical Learning, Springer 2009

Association in the course directory

Last modified: Mo 07.09.2020 15:29