Warning! The directory is not yet complete and will be amended until the beginning of the term.
050102 VO Mathematics for Computer Science Ed. 2 (2011S)
Labels
Weitere Informationen auf http://www.mat.univie.ac.at/~schlosse/courses/MInfLA/MInfLA2.html
Details
Language: German
Examination dates
- Thursday 30.06.2011
- Tuesday 19.07.2011
- Friday 29.07.2011
- Thursday 01.09.2011
- Thursday 15.09.2011
- Friday 30.09.2011
- Monday 07.11.2011
- Friday 11.11.2011
- Friday 25.11.2011
- Friday 02.03.2012
- Monday 23.04.2012
- Friday 27.04.2012
- Tuesday 05.06.2012
- Monday 02.07.2012
- Monday 27.08.2012
- Monday 29.10.2012
Lecturers
Classes (iCal) - next class is marked with N
- Tuesday 01.03. 11:50 - 12:55 Seminarraum
- Thursday 03.03. 09:00 - 10:10 Seminarraum
- Tuesday 08.03. 11:50 - 12:55 Seminarraum
- Thursday 10.03. 09:00 - 10:10 Seminarraum
- Tuesday 15.03. 11:50 - 12:55 Seminarraum
- Thursday 17.03. 09:00 - 10:10 Seminarraum
- Tuesday 22.03. 11:50 - 12:55 Seminarraum
- Thursday 24.03. 09:00 - 10:10 Seminarraum
- Tuesday 29.03. 11:50 - 12:55 Seminarraum
- Thursday 31.03. 09:00 - 10:10 Seminarraum
- Tuesday 05.04. 11:50 - 12:55 Seminarraum
- Thursday 07.04. 09:00 - 10:10 Seminarraum
- Tuesday 12.04. 11:50 - 12:55 Seminarraum
- Thursday 14.04. 09:00 - 10:10 Seminarraum
- Tuesday 03.05. 11:50 - 12:55 Seminarraum
- Thursday 05.05. 09:00 - 10:10 Seminarraum
- Tuesday 10.05. 11:50 - 12:55 Seminarraum
- Thursday 12.05. 09:00 - 10:10 Seminarraum
- Tuesday 17.05. 11:50 - 12:55 Seminarraum
- Thursday 19.05. 09:00 - 10:10 Seminarraum
- Tuesday 24.05. 11:50 - 12:55 Seminarraum
- Thursday 26.05. 09:00 - 10:10 Seminarraum
- Tuesday 31.05. 11:50 - 12:55 Seminarraum
- Tuesday 07.06. 11:50 - 12:55 Seminarraum
- Thursday 09.06. 09:00 - 10:10 Seminarraum
- Thursday 16.06. 09:00 - 10:10 Seminarraum
- Tuesday 21.06. 11:50 - 12:55 Seminarraum
- Tuesday 28.06. 11:50 - 12:55 Seminarraum
- Thursday 30.06. 09:00 - 10:10 Seminarraum
Information
Aims, contents and method of the course
Vecto spaces, matrices and linear mappings, linear equations, scalar product and orthogonality, eigenvalues and eigenvectors, graph theory, elementary functions, derivatives, integrals.
Assessment and permitted materials
Oral exam.
Minimum requirements and assessment criteria
The participants of this course shall get acquainted with standard mathematical terminology which is necessary for computer scientists.
Examination topics
Several fundamental concepts of mathematics shall be explained and discussed (with selected examples).
Reading list
G. Teschl und S. Teschl, Mathematik für Informatiker, Band 1: Diskrete Mathematik und Lineare Algebra, 3. Auflage, Springer, Berlin, 2008; ISBN 978-3-540-77431-0.
G. Teschl und S. Teschl, Mathematik für Informatiker, Band 2: Analysis und Statistik, 2. Auflage, Springer, Berlin, 2007; ISBN 13 978-3-540-72451-3.
G. Teschl und S. Teschl, Mathematik für Informatiker, Band 2: Analysis und Statistik, 2. Auflage, Springer, Berlin, 2007; ISBN 13 978-3-540-72451-3.
Association in the course directory
Last modified: Mo 07.09.2020 15:29