Warning! The directory is not yet complete and will be amended until the beginning of the term.
052300 VU Foundations of Data Analysis (2019W)
Continuous assessment of course work
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
- Registration is open from Sa 07.09.2019 09:00 to Mo 23.09.2019 09:00
- Deregistration possible until Mo 14.10.2019 23:59
Details
max. 50 participants
Language: English
Lecturers
Classes (iCal) - next class is marked with N
- Wednesday 02.10. 09:45 - 11:15 Hörsaal C2 UniCampus Hof 2 2G-K1-03
- Thursday 03.10. 11:30 - 13:00 Hörsaal C2 UniCampus Hof 2 2G-K1-03
- Wednesday 09.10. 09:45 - 11:15 Hörsaal C2 UniCampus Hof 2 2G-K1-03
- Thursday 10.10. 11:30 - 13:00 Hörsaal C2 UniCampus Hof 2 2G-K1-03
- Wednesday 16.10. 09:45 - 11:15 Hörsaal C2 UniCampus Hof 2 2G-K1-03
- Thursday 17.10. 11:30 - 13:00 Hörsaal C2 UniCampus Hof 2 2G-K1-03
- Wednesday 23.10. 09:45 - 11:15 Hörsaal C2 UniCampus Hof 2 2G-K1-03
- Thursday 24.10. 11:30 - 13:00 Hörsaal C2 UniCampus Hof 2 2G-K1-03
- Wednesday 30.10. 09:45 - 11:15 Hörsaal C2 UniCampus Hof 2 2G-K1-03
- Thursday 31.10. 11:30 - 13:00 Hörsaal C2 UniCampus Hof 2 2G-K1-03
-
Wednesday
06.11.
09:45 - 11:15
Hörsaal 2, Währinger Straße 29 2.OG
Hörsaal C2 UniCampus Hof 2 2G-K1-03 -
Thursday
07.11.
11:30 - 13:00
Hörsaal 2, Währinger Straße 29 2.OG
UZA2 Hörsaal 5 (Raum 2Z202) 2.OG -
Wednesday
13.11.
09:45 - 11:15
Hörsaal 2, Währinger Straße 29 2.OG
Hörsaal C2 UniCampus Hof 2 2G-K1-03 -
Thursday
14.11.
11:30 - 13:00
Hörsaal 2, Währinger Straße 29 2.OG
UZA2 Hörsaal 5 (Raum 2Z202) 2.OG -
Wednesday
20.11.
09:45 - 11:15
Hörsaal 2, Währinger Straße 29 2.OG
Hörsaal C2 UniCampus Hof 2 2G-K1-03 -
Thursday
21.11.
11:30 - 13:00
Hörsaal 2, Währinger Straße 29 2.OG
UZA2 Hörsaal 5 (Raum 2Z202) 2.OG -
Wednesday
27.11.
09:45 - 11:15
Hörsaal 2, Währinger Straße 29 2.OG
Hörsaal C2 UniCampus Hof 2 2G-K1-03 -
Thursday
28.11.
11:30 - 13:00
Hörsaal 2, Währinger Straße 29 2.OG
UZA2 Hörsaal 5 (Raum 2Z202) 2.OG -
Wednesday
04.12.
09:45 - 11:15
Hörsaal 2, Währinger Straße 29 2.OG
Hörsaal C2 UniCampus Hof 2 2G-K1-03 - Thursday 05.12. 11:30 - 13:00 Hörsaal 2, Währinger Straße 29 2.OG
- Wednesday 11.12. 09:45 - 11:15 Hörsaal 2, Währinger Straße 29 2.OG
- Thursday 12.12. 11:30 - 13:00 Hörsaal 2, Währinger Straße 29 2.OG
- Wednesday 08.01. 09:45 - 11:15 Hörsaal 2, Währinger Straße 29 2.OG
- Thursday 09.01. 11:30 - 13:00 Hörsaal 2, Währinger Straße 29 2.OG
- Wednesday 15.01. 09:45 - 11:15 Hörsaal 2, Währinger Straße 29 2.OG
- Thursday 16.01. 11:30 - 13:00 Hörsaal 2, Währinger Straße 29 2.OG
- Wednesday 22.01. 09:45 - 11:15 Hörsaal 2, Währinger Straße 29 2.OG
- Thursday 23.01. 11:30 - 13:00 Hörsaal 2, Währinger Straße 29 2.OG
- Wednesday 29.01. 09:45 - 11:15 Hörsaal 2, Währinger Straße 29 2.OG
- Thursday 30.01. 11:30 - 13:00 UZA2 Hörsaal 5 (Raum 2Z202) 2.OG
Information
Aims, contents and method of the course
Today's currency is data. However, data is only useful if we are able to extract useful information from it. This is the aim of data analysis in general. This course aims to survey the foundations of data analysis. This includes concepts from statistical inference, regression analysis, classification analysis, clustering analysis, dimensionality reduction.Concepts as well as techniques are introduced and practiced.
Assessment and permitted materials
- 2 labs (i.e. programming exercises including peer review), for each lab you will get a maximum of 18% of the required points.
- 2 pen-and-paper exercise sheets. They serve as a preparation for the tests. For each exercise sheet you will be able to get a maximum of 5% of the total points.
- 2 exams, one mid-term and one final, each 25% of the total points.
Furthermore you can complete:
- 1 exercise sheet to assess your current mathematical (prerequisite) knowledge, 1% of the total points;
- 3 anonymized feedbacks (for a maximum of 3 feedbacks i.e. 1% for each feedback) These feedbacks can either be returned to the Tutor responsible for the lecture in an anonymized manner.
- 2 pen-and-paper exercise sheets. They serve as a preparation for the tests. For each exercise sheet you will be able to get a maximum of 5% of the total points.
- 2 exams, one mid-term and one final, each 25% of the total points.
Furthermore you can complete:
- 1 exercise sheet to assess your current mathematical (prerequisite) knowledge, 1% of the total points;
- 3 anonymized feedbacks (for a maximum of 3 feedbacks i.e. 1% for each feedback) These feedbacks can either be returned to the Tutor responsible for the lecture in an anonymized manner.
Minimum requirements and assessment criteria
For bachelor students, the mandatory prerequisite for this class is the successful completion of the following courses:
- StEOP
- Programmierung 2 (PR2)
- Mathematische Grundlagen der Informatik 2 (MG2)
- Theoretische Informatik (THI)
- Modellierung (MOD)
- Algorithmen und Datenstrukturen (ADS)Grading will be done according to the following scheme:
1 – at least 87.5%
2 – at least 75.0%
3 - at least 60.0%
4 – at least 40.0%Please keep in mind that in order to pass the course, you will need at least 30% of the total score in all labs and pen-and-papers combined with 30% of the total score of the tests.In order to successfully pass the course, regular attendance is strongly recommended, however not mandatory.
- StEOP
- Programmierung 2 (PR2)
- Mathematische Grundlagen der Informatik 2 (MG2)
- Theoretische Informatik (THI)
- Modellierung (MOD)
- Algorithmen und Datenstrukturen (ADS)Grading will be done according to the following scheme:
1 – at least 87.5%
2 – at least 75.0%
3 - at least 60.0%
4 – at least 40.0%Please keep in mind that in order to pass the course, you will need at least 30% of the total score in all labs and pen-and-papers combined with 30% of the total score of the tests.In order to successfully pass the course, regular attendance is strongly recommended, however not mandatory.
Examination topics
1. Models, Statistical Inference, and General Techniques
1.1. Fundamental Concepts in Inference
1.2. Parametric Inference
1.3. Hypothesis Testing and p-values
1.4. The Bootstrap
1.5. Data Splitting, Cross-Validation
2. Regression Modelling
2.1. Simple Linear Regression
2.2. Multiple Regression
2.3. Further Regression Methods
2.4. Generalized Linear Models
2.5. Regression Trees
3. Classification Modelling
3.1. Decision Theoretic Introduction; Error rates, and Bayes Optimality
3.2. Logistic Regression
3.3. Classification Trees
3.4. Support Vector Machines
3.6. Further Classification Methods
4. Neural Networks
5. Basic Techniques of Unsupervised Learning
5.1. Dimension Reduction (Matrix Factorization)
5.2. Association Rules
6. Clustering Methods
6.1. Hierarchical Clustering
6.2. Model-based Clustering
6.3. Evaluation and Validation of Clustering Results
6.4. Density-based Clustering
6.5. Outlier Detection
1.1. Fundamental Concepts in Inference
1.2. Parametric Inference
1.3. Hypothesis Testing and p-values
1.4. The Bootstrap
1.5. Data Splitting, Cross-Validation
2. Regression Modelling
2.1. Simple Linear Regression
2.2. Multiple Regression
2.3. Further Regression Methods
2.4. Generalized Linear Models
2.5. Regression Trees
3. Classification Modelling
3.1. Decision Theoretic Introduction; Error rates, and Bayes Optimality
3.2. Logistic Regression
3.3. Classification Trees
3.4. Support Vector Machines
3.6. Further Classification Methods
4. Neural Networks
5. Basic Techniques of Unsupervised Learning
5.1. Dimension Reduction (Matrix Factorization)
5.2. Association Rules
6. Clustering Methods
6.1. Hierarchical Clustering
6.2. Model-based Clustering
6.3. Evaluation and Validation of Clustering Results
6.4. Density-based Clustering
6.5. Outlier Detection
Reading list
> Christopher M. Bishop, Pattern Recognition and Machine Learning, Springer 2007.
> Han, Kamber: Data Mining: Concepts and Techniques, Elsevier 2012.
> Hastie-Tibshirani-Friedman: The Elements of Statistical Learning, Springer 2009.
> James-Witten-Hastie-Tibshirani: An Introduction to Statistical Learning with Applications in R, Springer 2015.
> Han, Kamber: Data Mining: Concepts and Techniques, Elsevier 2012.
> Hastie-Tibshirani-Friedman: The Elements of Statistical Learning, Springer 2009.
> James-Witten-Hastie-Tibshirani: An Introduction to Statistical Learning with Applications in R, Springer 2015.
Association in the course directory
Module: FDA AKM SWI STW
Last modified: Sa 02.04.2022 00:17