Warning! The directory is not yet complete and will be amended until the beginning of the term.
052311 VU Data Mining (2024W)
Continuous assessment of course work
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
- Registration is open from Fr 13.09.2024 09:00 to Fr 20.09.2024 09:00
- Deregistration possible until Mo 14.10.2024 23:59
Details
max. 25 participants
Language: English
Lecturers
Classes (iCal) - next class is marked with N
- Tuesday 01.10. 15:00 - 16:30 PC-Seminarraum 3, Kolingasse 14-16, OG02
- Thursday 03.10. 13:15 - 14:45 Seminarraum 6, Währinger Straße 29 1.OG
- Tuesday 08.10. 15:00 - 16:30 PC-Seminarraum 3, Kolingasse 14-16, OG02
- Thursday 10.10. 13:15 - 14:45 Seminarraum 6, Währinger Straße 29 1.OG
- Tuesday 15.10. 15:00 - 16:30 PC-Seminarraum 3, Kolingasse 14-16, OG02
- Thursday 17.10. 13:15 - 14:45 Seminarraum 6, Währinger Straße 29 1.OG
- Tuesday 22.10. 15:00 - 16:30 PC-Seminarraum 3, Kolingasse 14-16, OG02
- Thursday 24.10. 13:15 - 14:45 Seminarraum 6, Währinger Straße 29 1.OG
- Tuesday 29.10. 15:00 - 16:30 PC-Seminarraum 3, Kolingasse 14-16, OG02
- Thursday 31.10. 13:15 - 14:45 Seminarraum 6, Währinger Straße 29 1.OG
- Tuesday 05.11. 15:00 - 16:30 PC-Seminarraum 3, Kolingasse 14-16, OG02
- Thursday 07.11. 13:15 - 14:45 Seminarraum 6, Währinger Straße 29 1.OG
- Tuesday 12.11. 15:00 - 16:30 PC-Seminarraum 3, Kolingasse 14-16, OG02
- Thursday 14.11. 13:15 - 14:45 Seminarraum 6, Währinger Straße 29 1.OG
- Tuesday 19.11. 15:00 - 16:30 PC-Seminarraum 3, Kolingasse 14-16, OG02
- Thursday 21.11. 13:15 - 14:45 Seminarraum 6, Währinger Straße 29 1.OG
- Tuesday 26.11. 15:00 - 16:30 PC-Seminarraum 3, Kolingasse 14-16, OG02
- Thursday 28.11. 13:15 - 14:45 Seminarraum 6, Währinger Straße 29 1.OG
- Tuesday 03.12. 15:00 - 16:30 PC-Seminarraum 3, Kolingasse 14-16, OG02
- Thursday 05.12. 13:15 - 14:45 Seminarraum 6, Währinger Straße 29 1.OG
- Tuesday 10.12. 15:00 - 16:30 PC-Seminarraum 3, Kolingasse 14-16, OG02
- Thursday 12.12. 13:15 - 14:45 Seminarraum 6, Währinger Straße 29 1.OG
- Tuesday 17.12. 15:00 - 16:30 PC-Seminarraum 3, Kolingasse 14-16, OG02
- Tuesday 07.01. 15:00 - 16:30 PC-Seminarraum 3, Kolingasse 14-16, OG02
- Thursday 09.01. 13:15 - 14:45 Seminarraum 6, Währinger Straße 29 1.OG
- Tuesday 14.01. 15:00 - 16:30 PC-Seminarraum 3, Kolingasse 14-16, OG02
- Thursday 16.01. 13:15 - 14:45 Seminarraum 6, Währinger Straße 29 1.OG
- N Tuesday 21.01. 15:00 - 16:30 PC-Seminarraum 3, Kolingasse 14-16, OG02
- Thursday 23.01. 13:15 - 14:45 Seminarraum 6, Währinger Straße 29 1.OG
- Tuesday 28.01. 15:00 - 16:30 PC-Seminarraum 3, Kolingasse 14-16, OG02
-
Thursday
30.01.
13:15 - 14:45
Seminarraum 3, Währinger Straße 29 1.UG
Seminarraum 6, Währinger Straße 29 1.OG
Information
Aims, contents and method of the course
Assessment and permitted materials
Active participation
Exercise sheets (individual work)
Final exam (individual work)
Exercise sheets (individual work)
Final exam (individual work)
Minimum requirements and assessment criteria
A mandatory prerequisite for this class is the successful completion of FDA (052300 VU Foundations of Data Analysis) or an equivalent lecture. Experience in programming in Python is expected.Components:
10% Each exercise sheet (5 in total)
50% Final examGrading:
>87,00 %: 1
between 75,00 % and 86,99 %: 2
between 63,00 % and 74,99 %: 3
between 50,00 % and 62,99 %: 4
< 50%: 5
10% Each exercise sheet (5 in total)
50% Final examGrading:
>87,00 %: 1
between 75,00 % and 86,99 %: 2
between 63,00 % and 74,99 %: 3
between 50,00 % and 62,99 %: 4
< 50%: 5
Examination topics
- Density-based clustering
- High-dimensional clustering
- Alternative clustering
- Deep clustering
- Causality
- Neural networks
- Deep learning on sets
- Deep learning on graphs
- Diffusion processes on graphs
- Information access
- Polarization
- High-dimensional clustering
- Alternative clustering
- Deep clustering
- Causality
- Neural networks
- Deep learning on sets
- Deep learning on graphs
- Diffusion processes on graphs
- Information access
- Polarization
Reading list
David Easley and Jon Kleinberg, Networks, Crowds, and Markets: Reasoning About a Highly Connected World
Albert-László Barabási, Network Science
Albert-László Barabási, Network Science
Association in the course directory
Module: DM
Last modified: Fr 17.01.2025 07:25
There will be exercise sessions and attending them is mandatory.
The final exams will be on-site.Important: Attendance in the first lecture on Tuesday 1.10. at 3 pm is mandatory.The lecture covers essential topics in data mining and machine learning and focuses on recent research on the following topics:
1. Density-based clustering
2. High-dimensional clustering, alternative and deep clustering.
3. Causality
4. Deep learning on sets and graphs
5. Diffusion processes on graphs and graph miningSubject-specific goals:
- Understanding the characteristics of complex data
- Methods and techniques for data mining and machine learning
- Analysis and interpretation of graph-structured scientific dataGeneric goals:
- Improvement of programming skills
- Understanding of interplay in data mining, machine learning and other disciplines