Warning! The directory is not yet complete and will be amended until the beginning of the term.
052315 VU Natural Language Processing (2018S)
Continuous assessment of course work
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
- Registration is open from Mo 12.02.2018 09:00 to Tu 20.02.2018 23:59
- Deregistration possible until Su 18.03.2018 23:59
Details
max. 25 participants
Language: English
Lecturers
Classes (iCal) - next class is marked with N
- Monday 05.03. 11:30 - 14:45 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
- Monday 19.03. 11:30 - 14:45 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
- Monday 09.04. 11:30 - 14:45 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
- Monday 16.04. 11:30 - 14:45 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
- Monday 23.04. 11:30 - 14:45 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
- Monday 30.04. 11:30 - 14:45 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
- Monday 07.05. 11:30 - 14:45 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
- Monday 14.05. 11:30 - 14:45 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
- Monday 28.05. 11:30 - 14:45 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
- Monday 04.06. 11:30 - 14:45 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
- Monday 11.06. 11:30 - 14:45 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
- Monday 18.06. 11:30 - 14:45 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
- Monday 25.06. 11:30 - 14:45 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
Information
Aims, contents and method of the course
The students know the basics of natural language processing. They master the use of linguistic resources and tools, and are able to efficiently apply them to independently design and implement solutions for subject-specific problems. Students can convey this knowledge in written form and in oral presentations.This is a practice-oriented course with a significant implementation requirement. It is based on the NLTK book with many implementation examples in Python. Selected problems are also solved using SWI-Prolog.This course covers the following topics: language processing and Python, accessing text corpora and lexical resources, processing raw text, writing structured programs, categorizing and tagging words, learning to classify text, extracting information from text, analyzing sentence structure, building feature based grammars, analyzing the meaning of sentences.The main software tools used in this course are: Python 3 and NLTK with bpython as interpreter and Geany as editor; as well as SWI-Prolog with the PDT Eclipse Prolog IDE.
Assessment and permitted materials
There are two exams, one after the first half of the semester and one at the end of the semester. For each exam there are 80 minutes to answer 20 questions. Each correct answer counts 2 points. No support material is allowed.All electronic devices must be turned off and put away before starting the exam. They must not be kept on the person or placed in clothes but packed in, e.g. a closed bag and cannot be taken out during the entire exam.The better of the two results is chosen to account for 40 % of the total rating.The remaining 60 % are earned through voluntary oral presentations during the semester. There are altogether 10 exercise sheets with problems to solve. For a certain exercise sheet at most one problem can be presented by a student. The best two results each account for 30 % of the total rating.
Minimum requirements and assessment criteria
A mandatory prerequisite for this course is the successful completion of Foundations of Data Analysis.The grading scale for the course is: 1: at least 90%, 2: at least 80%, 3: at least 65%, 4: at least 50%.
Examination topics
There are exercise sheets for the following topics: language processing and Python, accessing text corpora and lexical resources, processing raw text, writing structured programs, categorizing and tagging words, learning to classify text, extracting information from text, analyzing sentence structure, building feature based grammars, analyzing the meaning of sentences. The first exam covers the first five topics, the second exam the remaining topics.
Reading list
Steven Bird, Ewan Klein, and Edward Loper. Natural Language Processing with Python. http://www.nltk.org/book/, O'Reilly Media, 2009.Daniel Jurafsky and James H. Martin. Speech and Language Processing. 2nd Edition, Pearson, 2009.Ruslan Mitkov, ed. The Oxford Handbook of Computational Linguistics. Oxford University Press, 2005.Nitin Indurkhya and Fred J. Damerau, eds. Handbook of Natural Language Processing. 2nd Edition, Chapman and Hall/CRC, 2010.Kai-Uwe Carstensen et al., eds. Computerlinguistik und Sprachtechnologie - Eine Einführung. 3rd Edition, Springer Spektrum, 2010 (in German).
Association in the course directory
Module: NLP MSP
Last modified: Mo 07.09.2020 15:30