052316 VU Deep Learning for Natural Language Processing (2023W)
Continuous assessment of course work
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
- Registration is open from We 13.09.2023 09:00 to We 20.09.2023 09:00
- Deregistration possible until Sa 14.10.2023 23:59
Details
max. 25 participants
Language: English
Lecturers
Classes (iCal) - next class is marked with N
- Thursday 05.10. 09:45 - 11:15 PC-Seminarraum 3, Kolingasse 14-16, OG02
- Thursday 05.10. 11:30 - 13:00 PC-Seminarraum 3, Kolingasse 14-16, OG02
- Thursday 12.10. 09:45 - 11:15 PC-Seminarraum 3, Kolingasse 14-16, OG02
- Thursday 12.10. 11:30 - 13:00 PC-Seminarraum 3, Kolingasse 14-16, OG02
- Thursday 19.10. 09:45 - 11:15 PC-Seminarraum 3, Kolingasse 14-16, OG02
- Thursday 19.10. 11:30 - 13:00 PC-Seminarraum 3, Kolingasse 14-16, OG02
- Thursday 09.11. 09:45 - 11:15 PC-Seminarraum 3, Kolingasse 14-16, OG02
- Thursday 09.11. 11:30 - 13:00 PC-Seminarraum 3, Kolingasse 14-16, OG02
- Thursday 16.11. 09:45 - 11:15 PC-Seminarraum 3, Kolingasse 14-16, OG02
- Thursday 16.11. 11:30 - 13:00 PC-Seminarraum 3, Kolingasse 14-16, OG02
- Thursday 23.11. 09:45 - 11:15 PC-Seminarraum 3, Kolingasse 14-16, OG02
- Thursday 23.11. 11:30 - 13:00 PC-Seminarraum 3, Kolingasse 14-16, OG02
- Thursday 30.11. 09:45 - 11:15 PC-Seminarraum 3, Kolingasse 14-16, OG02
- Thursday 30.11. 11:30 - 13:00 PC-Seminarraum 3, Kolingasse 14-16, OG02
- Thursday 07.12. 09:45 - 11:15 PC-Seminarraum 3, Kolingasse 14-16, OG02
- Thursday 07.12. 11:30 - 13:00 PC-Seminarraum 3, Kolingasse 14-16, OG02
- Thursday 14.12. 09:45 - 11:15 PC-Seminarraum 3, Kolingasse 14-16, OG02
- Thursday 14.12. 11:30 - 13:00 PC-Seminarraum 3, Kolingasse 14-16, OG02
- Thursday 11.01. 09:45 - 11:15 PC-Seminarraum 3, Kolingasse 14-16, OG02
- Thursday 11.01. 11:30 - 13:00 PC-Seminarraum 3, Kolingasse 14-16, OG02
- Thursday 18.01. 09:45 - 11:15 PC-Seminarraum 3, Kolingasse 14-16, OG02
- Thursday 18.01. 11:30 - 13:00 PC-Seminarraum 3, Kolingasse 14-16, OG02
- Thursday 25.01. 09:45 - 11:15 PC-Seminarraum 3, Kolingasse 14-16, OG02
- Thursday 25.01. 11:30 - 13:00 PC-Seminarraum 3, Kolingasse 14-16, OG02
Information
Aims, contents and method of the course
Assessment and permitted materials
- Regular assignments throughout the semester in Moodle 20%
- Programming exercises 20%
- Midterm exam 30%
- Final exam 30%
- Programming exercises 20%
- Midterm exam 30%
- Final exam 30%
Minimum requirements and assessment criteria
The participant must attend at least 75 % of the sessions. The grade is calculated from the total points as follows:>= 90% very good (1)
>= 80% good (2)
>= 65% satisfactory (3)
>= 50% sufficient (4)
< 50% not sufficient (5)
>= 80% good (2)
>= 65% satisfactory (3)
>= 50% sufficient (4)
< 50% not sufficient (5)
Examination topics
Reading list
Jason Brownlee: "Basics of Linear Algebra for Machine Learning - Discover the Mathematical Language of Data in Python"
https://github.com/balban/Books/tree/master/Linear%20AlgebraYoav Goldberg: "Neural Network Methods for Natural Language Processing", Morgan & Claypool, 2017
https://github.com/Michael2Tang/ML_DocSteven Bird, Ewan Klein, Edward Loper: "Natural Language Processing with Python - Analyzing Text with the Natural Language Toolkit"
https://www.nltk.org/bookIan Goodfellow and Yoshua Bengio and Aaron Courville: "Deep Learning", MIT Press, 2016.
https://www.deeplearningbook.org
https://github.com/balban/Books/tree/master/Linear%20AlgebraYoav Goldberg: "Neural Network Methods for Natural Language Processing", Morgan & Claypool, 2017
https://github.com/Michael2Tang/ML_DocSteven Bird, Ewan Klein, Edward Loper: "Natural Language Processing with Python - Analyzing Text with the Natural Language Toolkit"
https://www.nltk.org/bookIan Goodfellow and Yoshua Bengio and Aaron Courville: "Deep Learning", MIT Press, 2016.
https://www.deeplearningbook.org
Association in the course directory
Last modified: Fr 10.11.2023 10:47
(DH students who want to take this lecture need to have passed the lecture "Practical Machine Learning for Natural Language Processing" with very good success, or have equivalent previous knowledge in programming and machine learning, for successfully participating in this lecture.)