Warning! The directory is not yet complete and will be amended until the beginning of the term.
052813 VU Scientific Data Management (2022S)
Continuous assessment of course work
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
- Registration is open from Mo 14.02.2022 09:00 to Th 24.02.2022 10:00
- Deregistration possible until Mo 14.03.2022 23:59
Details
max. 25 participants
Language: English
Lecturers
Classes (iCal) - next class is marked with N
- Tuesday 01.03. 15:00 - 16:30 Hörsaal 2, Währinger Straße 29 2.OG
- Wednesday 02.03. 18:30 - 20:00 Hörsaal 3, Währinger Straße 29 3.OG
- Tuesday 08.03. 15:00 - 16:30 Hörsaal 2, Währinger Straße 29 2.OG
- Wednesday 09.03. 18:30 - 20:00 Hörsaal 3, Währinger Straße 29 3.OG
- Tuesday 15.03. 15:00 - 16:30 Hörsaal 2, Währinger Straße 29 2.OG
- Wednesday 16.03. 18:30 - 20:00 Hörsaal 3, Währinger Straße 29 3.OG
- Tuesday 22.03. 15:00 - 16:30 Hörsaal 2, Währinger Straße 29 2.OG
- Wednesday 23.03. 18:30 - 20:00 Hörsaal 3, Währinger Straße 29 3.OG
- Tuesday 29.03. 15:00 - 16:30 Hörsaal 2, Währinger Straße 29 2.OG
- Wednesday 30.03. 18:30 - 20:00 Hörsaal 3, Währinger Straße 29 3.OG
- Tuesday 05.04. 15:00 - 16:30 Hörsaal 2, Währinger Straße 29 2.OG
- Wednesday 06.04. 18:30 - 20:00 Hörsaal 3, Währinger Straße 29 3.OG
- Tuesday 26.04. 15:00 - 16:30 Hörsaal 2, Währinger Straße 29 2.OG
- Wednesday 27.04. 18:30 - 20:00 Hörsaal 3, Währinger Straße 29 3.OG
- Tuesday 03.05. 15:00 - 16:30 Hörsaal 2, Währinger Straße 29 2.OG
- Wednesday 04.05. 18:30 - 20:00 Hörsaal 3, Währinger Straße 29 3.OG
- Tuesday 10.05. 15:00 - 16:30 Hörsaal 2, Währinger Straße 29 2.OG
- Wednesday 11.05. 18:30 - 20:00 Hörsaal 3, Währinger Straße 29 3.OG
- Tuesday 17.05. 15:00 - 16:30 Hörsaal 2, Währinger Straße 29 2.OG
- Wednesday 18.05. 18:30 - 20:00 Hörsaal 3, Währinger Straße 29 3.OG
- Tuesday 24.05. 15:00 - 16:30 Hörsaal 2, Währinger Straße 29 2.OG
- Wednesday 25.05. 18:30 - 20:00 Hörsaal 3, Währinger Straße 29 3.OG
- Tuesday 31.05. 15:00 - 16:30 Hörsaal 2, Währinger Straße 29 2.OG
- Wednesday 01.06. 18:30 - 20:00 Hörsaal 3, Währinger Straße 29 3.OG
- Wednesday 08.06. 18:30 - 20:00 Hörsaal 3, Währinger Straße 29 3.OG
- Tuesday 14.06. 15:00 - 16:30 Hörsaal 2, Währinger Straße 29 2.OG
- Wednesday 15.06. 18:30 - 20:00 Hörsaal 3, Währinger Straße 29 3.OG
- Tuesday 21.06. 15:00 - 16:30 Hörsaal 2, Währinger Straße 29 2.OG
- Wednesday 22.06. 18:30 - 20:00 Hörsaal 3, Währinger Straße 29 3.OG
- Tuesday 28.06. 15:00 - 16:30 Hörsaal 2, Währinger Straße 29 2.OG
-
Wednesday
29.06.
18:30 - 20:00
Hörsaal 3, Währinger Straße 29 3.OG
Seminarraum 7, Währinger Straße 29 1.OG
Information
Aims, contents and method of the course
Assessment and permitted materials
Active participation
Work on exercise-sheets
Work on programming assignments in groups
Final exam
Work on exercise-sheets
Work on programming assignments in groups
Final exam
Minimum requirements and assessment criteria
It is recommended to complete the following courses beforehand:
- Algorithmen und Datenstrukturen
- Datenbanksysteme
- Software Engineering
- Netzwerktechnologien30% exercise sheets
30% programming assignments in teams
40% written final exam>87,00%: 1
75,00% - 86,99: 2
63,00% - 74,99%: 3
50,00% - 62,99%: 4
< 50%: 5
- Algorithmen und Datenstrukturen
- Datenbanksysteme
- Software Engineering
- Netzwerktechnologien30% exercise sheets
30% programming assignments in teams
40% written final exam>87,00%: 1
75,00% - 86,99: 2
63,00% - 74,99%: 3
50,00% - 62,99%: 4
< 50%: 5
Examination topics
Scientific Data and Feature Spaces
Clustering
Big Data Frameworks
Searching Numerical Data
Searching Sets
Searching & Mining Graphs
Analyzing Large Networks
Clustering
Big Data Frameworks
Searching Numerical Data
Searching Sets
Searching & Mining Graphs
Analyzing Large Networks
Reading list
Ester M., Sander J. Knowledge Discovery in Databases: Techniken und Anwendungen.
J. Leskovec, A. Rajaraman, J. Ullman. Mining of Massive Datasets.
J. Han, M. Kamber, J.Pei.Data Mining: Concepts and Techniques.
I. H. Witten , E. Frank, M. A. Hall. Data Mining: Practical Machine Learning Tools and Techniques.
J. Leskovec, A. Rajaraman, J. Ullman. Mining of Massive Datasets.
J. Han, M. Kamber, J.Pei.Data Mining: Concepts and Techniques.
I. H. Witten , E. Frank, M. A. Hall. Data Mining: Practical Machine Learning Tools and Techniques.
Association in the course directory
Module: SDM
Last modified: We 12.10.2022 10:50
- Analysis of scientific data
- Interpretation and evaluation of results of the analysis process
- Choosing and applying techniques for structured data
- Implementation of scalable solutions for large amounts of data
- Users support and adviceGeneric goals:
- Teamwork
- Improvement of programming skills
- Understanding of interplay in data mining and scientific computing