Universität Wien

053611 VU Mathematics of Data Science (2022W)

Continuous assessment of course work

Registration/Deregistration

Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).

Details

max. 25 participants
Language: English

Lecturers

Classes (iCal) - next class is marked with N

The first lecture takes place on October 13 2022

  • Tuesday 04.10. 09:45 - 11:15 Seminarraum 5, Kolingasse 14-16, EG00
  • Thursday 06.10. 10:30 - 11:15 Seminarraum 5, Kolingasse 14-16, EG00
  • Tuesday 11.10. 09:45 - 11:15 Seminarraum 5, Kolingasse 14-16, EG00
  • Thursday 13.10. 10:30 - 11:15 Seminarraum 5, Kolingasse 14-16, EG00
  • Tuesday 18.10. 09:45 - 11:15 Seminarraum 5, Kolingasse 14-16, EG00
  • Thursday 20.10. 10:30 - 11:15 Seminarraum 5, Kolingasse 14-16, EG00
  • Tuesday 25.10. 09:45 - 11:15 Seminarraum 5, Kolingasse 14-16, EG00
  • Thursday 27.10. 10:30 - 11:15 Seminarraum 5, Kolingasse 14-16, EG00
  • Thursday 03.11. 10:30 - 11:15 Seminarraum 5, Kolingasse 14-16, EG00
  • Tuesday 08.11. 09:45 - 11:15 Seminarraum 5, Kolingasse 14-16, EG00
  • Thursday 10.11. 10:30 - 11:15 Seminarraum 5, Kolingasse 14-16, EG00
  • Tuesday 15.11. 09:45 - 11:15 Seminarraum 5, Kolingasse 14-16, EG00
  • Thursday 17.11. 10:30 - 11:15 Seminarraum 5, Kolingasse 14-16, EG00
  • Tuesday 22.11. 09:45 - 11:15 Seminarraum 5, Kolingasse 14-16, EG00
  • Thursday 24.11. 10:30 - 11:15 Seminarraum 5, Kolingasse 14-16, EG00
  • Tuesday 29.11. 09:45 - 11:15 Seminarraum 5, Kolingasse 14-16, EG00
  • Thursday 01.12. 10:30 - 11:15 Seminarraum 5, Kolingasse 14-16, EG00
  • Tuesday 06.12. 09:45 - 11:15 Seminarraum 5, Kolingasse 14-16, EG00
  • Tuesday 13.12. 09:45 - 11:15 Seminarraum 5, Kolingasse 14-16, EG00
  • Thursday 15.12. 10:30 - 11:15 Seminarraum 5, Kolingasse 14-16, EG00
  • Tuesday 10.01. 09:45 - 11:15 Seminarraum 5, Kolingasse 14-16, EG00
  • Thursday 12.01. 10:30 - 11:15 Seminarraum 5, Kolingasse 14-16, EG00
  • Tuesday 17.01. 09:45 - 11:15 Seminarraum 5, Kolingasse 14-16, EG00
  • Thursday 19.01. 10:30 - 11:15 Seminarraum 5, Kolingasse 14-16, EG00
  • Tuesday 24.01. 09:45 - 11:15 Seminarraum 5, Kolingasse 14-16, EG00
  • Thursday 26.01. 10:30 - 11:15 Seminarraum 5, Kolingasse 14-16, EG00
  • Tuesday 31.01. 09:45 - 11:15 Seminarraum 5, Kolingasse 14-16, EG00

Information

Aims, contents and method of the course

This course establishes a mathematical basis required to understand tools and methods in data science. Since it is expected that the students in this course come from a broad range of academical backgrounds, the classes will be adapted to the prior knowledge of the students.

In this course we will get to know the following topics in various degrees of depth: high-dimensionality and dimension reduction, principle components analysis, graphs and clustering, image and signal processing, sparsity and compressed sensing

Assessment and permitted materials

Oral exam at the end of the semester.

Minimum requirements and assessment criteria

Basic knowledge of all mathematical concepts presented in the lecture.

Examination topics

Everything covered in the lectures.

Reading list

- Bishop: Pattern Recognition and Machine Learning
- Bandeira, Singer, Strohmer: Mathematics of Data Science, https://people.math.ethz.ch/~abandeira/BandeiraSingerStrohmer-MDS-draft.pdf
- Brunton, Kutz: Data-Driven Science and Engineering
- Shalev-Shwartz, Ben-David: Understanding Machine Learning

Association in the course directory

Modul: MDS

Last modified: Mo 17.10.2022 12:09