053613 VU Introduction to Machine Learning (2022W)
Continuous assessment of course work
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
- Registration is open from We 14.09.2022 09:00 to We 21.09.2022 09:00
- Deregistration possible until Fr 14.10.2022 23:59
Details
max. 25 participants
Language: English
Lecturers
Classes (iCal) - next class is marked with N
- Monday 03.10. 15:00 - 16:30 Hörsaal 3, Währinger Straße 29 3.OG
- Friday 07.10. 13:15 - 14:45 Hörsaal 2, Währinger Straße 29 2.OG
- Monday 10.10. 15:00 - 16:30 Hörsaal 2, Währinger Straße 29 2.OG
- Friday 14.10. 13:15 - 14:45 Hörsaal 2, Währinger Straße 29 2.OG
-
Monday
17.10.
15:00 - 16:30
Hörsaal 2, Währinger Straße 29 2.OG
Seminarraum 3, Währinger Straße 29 1.UG - Friday 21.10. 13:15 - 14:45 Hörsaal 2, Währinger Straße 29 2.OG
- Monday 24.10. 15:00 - 16:30 Hörsaal 2, Währinger Straße 29 2.OG
- Friday 28.10. 13:15 - 14:45 Hörsaal 2, Währinger Straße 29 2.OG
-
Monday
31.10.
15:00 - 16:30
Hörsaal 2, Währinger Straße 29 2.OG
Seminarraum 2, Währinger Straße 29 1.UG - Friday 04.11. 13:15 - 14:45 Hörsaal 2, Währinger Straße 29 2.OG
- Monday 07.11. 15:00 - 16:30 Hörsaal 2, Währinger Straße 29 2.OG
- Friday 11.11. 13:15 - 14:45 Hörsaal 2, Währinger Straße 29 2.OG
-
Monday
14.11.
15:00 - 16:30
Hörsaal 2, Währinger Straße 29 2.OG
Seminarraum 12, Währinger Straße 29 2.OG - Friday 18.11. 13:15 - 14:45 Digital
- Monday 21.11. 15:00 - 16:30 Digital
- Friday 25.11. 13:15 - 14:45 Hörsaal 2, Währinger Straße 29 2.OG
-
Monday
28.11.
15:00 - 16:30
Hörsaal 2, Währinger Straße 29 2.OG
Seminarraum 4, Währinger Straße 29 1.UG - Friday 02.12. 13:15 - 14:45 Hörsaal 2, Währinger Straße 29 2.OG
- Monday 05.12. 15:00 - 16:30 Hörsaal 2, Währinger Straße 29 2.OG
- Friday 09.12. 13:15 - 14:45 Hörsaal 2, Währinger Straße 29 2.OG
-
Monday
12.12.
15:00 - 16:30
Hörsaal 2, Währinger Straße 29 2.OG
PC-Unterrichtsraum 6, Währinger Straße 29 2.OG - Friday 16.12. 13:15 - 14:45 Hörsaal 2, Währinger Straße 29 2.OG
-
Monday
09.01.
15:00 - 17:15
Hörsaal 2, Währinger Straße 29 2.OG
Seminarraum 10, Währinger Straße 29 2.OG - Friday 13.01. 13:15 - 14:45 Hörsaal 2, Währinger Straße 29 2.OG
- Monday 16.01. 15:00 - 16:30 Hörsaal 2, Währinger Straße 29 2.OG
- Friday 20.01. 13:15 - 14:45 Hörsaal 2, Währinger Straße 29 2.OG
-
Monday
23.01.
15:00 - 16:30
Hörsaal 2, Währinger Straße 29 2.OG
PC-Unterrichtsraum 1, Währinger Straße 29 1.UG - Friday 27.01. 13:15 - 14:45 Hörsaal 2, Währinger Straße 29 2.OG
- Monday 30.01. 15:00 - 16:30 Hörsaal 2, Währinger Straße 29 2.OG
Information
Aims, contents and method of the course
Assessment and permitted materials
* Written exam: at the end of the semester; you will be allowed to bring 2 handwritten A4 sheets (4 pages) of notes* Programming assignments: coding in Python; you will have to submit your executable source code & a written report on your implementation and results; some of the programming assignments include a peer-review of your colleagues' source code & report* Pen & paper exercises: you will solve the pen & paper exercises at home; to be awarded credits for your solutions you have to present your solutions in the pen & paper exercises sessions (you will be randomly selected); pen & paper exercises will take place about every 2nd week
Minimum requirements and assessment criteria
30% Written exam
40% Programming exercises
30% Pen & paper exercisesP = Average weighted percentage on the written exam, the programming exercises, and the pen & paper exercises90% <= P <= % Sehr Gut (1)
77% <= P < 90% Gut (2)
62% <= P < 77% Befriedigend (3)
50% <= P < 62% Genügend (4)
0% <= P < 50% Nicht Genügend (5)To successfully complete the course you need to achieve at least 50% of the points of the written exam, 50% of the points on the pen & paper exercises, and 50% of the points on the programming assignments.Attendance of the lecture parts of the course is voluntary but highly recommended. Attendance of the pen & paper exercise and the written exam is compulsory to pass the course.
40% Programming exercises
30% Pen & paper exercisesP = Average weighted percentage on the written exam, the programming exercises, and the pen & paper exercises90% <= P <= % Sehr Gut (1)
77% <= P < 90% Gut (2)
62% <= P < 77% Befriedigend (3)
50% <= P < 62% Genügend (4)
0% <= P < 50% Nicht Genügend (5)To successfully complete the course you need to achieve at least 50% of the points of the written exam, 50% of the points on the pen & paper exercises, and 50% of the points on the programming assignments.Attendance of the lecture parts of the course is voluntary but highly recommended. Attendance of the pen & paper exercise and the written exam is compulsory to pass the course.
Examination topics
The presented topics in the lecture (according to slides + exercises). Referenced Literature (as indicated in detail on the lecture slides).
Reading list
* Christopher Bishop, 2006, "Pattern Recognition and Machine Learning", Springer; available online: https://www.microsoft.com/en-us/research/publication/pattern-recognition-machine-learning/* Trevor Hastie, Robert Tibshirani, Jerome Friedman, 2009, "The Elements of Statistical Learning: Data Mining, Inference, and Prediction", Springer; available online: https://web.stanford.edu/~hastie/ElemStatLearn/* Tom Mitchell, 1997, "Machine Learning", McGraw Hill* Shai Shalev-Shwartz and Shai Ben-David, 2014, "Understanding Machine Learning: From Theory to Algorithms", Cambridge University Press; available online: https://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/
Association in the course directory
Last modified: Th 11.05.2023 11:27
Upon successful participation in the course, students will understand the fundamentals of machine learning and how to apply basic machine learning approaches/ideas in theory and practice.Lecture Contents:
* What is Machine Learning?
* Basic Machine Learning pipelines
* Linear models for regression
* Linear models for classification
* Model validation and model selection
* Kernels
* Neural networks
* Dimensionality reduction
* Probabilistic modeling
* Generative modeling
* Deep generative modelsMethod:
Lecture + pen & paper exercises + programming exercises