Universität Wien
Warning! The directory is not yet complete and will be amended until the beginning of the term.

053613 VU Introduction to Machine Learning (2024W)

Continuous assessment of course work

Registration/Deregistration

Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).

Details

max. 25 participants
Language: English

Lecturers

Classes (iCal) - next class is marked with N

  • Monday 07.10. 15:00 - 16:30 Hörsaal 2, Währinger Straße 29 2.OG
  • Friday 11.10. 13:15 - 14:45 Hörsaal 2, Währinger Straße 29 2.OG
  • Monday 14.10. 15:00 - 16:30 Hörsaal 2, Währinger Straße 29 2.OG
  • Friday 18.10. 13:15 - 14:45 Hörsaal 2, Währinger Straße 29 2.OG
  • Monday 21.10. 15:00 - 16:30 Hörsaal 2, Währinger Straße 29 2.OG
    Seminarraum 11, Währinger Straße 29 2.OG
  • Friday 25.10. 13:15 - 14:45 Hörsaal 2, Währinger Straße 29 2.OG
  • Monday 28.10. 15:00 - 16:30 Hörsaal 2, Währinger Straße 29 2.OG
  • Monday 04.11. 15:00 - 16:30 Hörsaal 2, Währinger Straße 29 2.OG
  • Friday 08.11. 13:15 - 14:45 Hörsaal 2, Währinger Straße 29 2.OG
  • Monday 11.11. 15:00 - 16:30 Hörsaal 2, Währinger Straße 29 2.OG
    Seminarraum 12, Währinger Straße 29 2.OG
  • Friday 15.11. 13:15 - 14:45 Hörsaal 2, Währinger Straße 29 2.OG
  • Monday 18.11. 15:00 - 16:30 Hörsaal 2, Währinger Straße 29 2.OG
  • Friday 22.11. 13:15 - 14:45 Hörsaal 2, Währinger Straße 29 2.OG
  • Monday 25.11. 15:00 - 16:30 Hörsaal 2, Währinger Straße 29 2.OG
  • Friday 29.11. 13:15 - 14:45 Hörsaal 2, Währinger Straße 29 2.OG
  • Monday 02.12. 15:00 - 16:30 Hörsaal 2, Währinger Straße 29 2.OG
  • Thursday 05.12. 15:00 - 16:00 Seminarraum 8, Währinger Straße 29 1.OG
  • Friday 06.12. 13:15 - 14:45 Hörsaal 2, Währinger Straße 29 2.OG
  • Monday 09.12. 15:00 - 16:30 Hörsaal 2, Währinger Straße 29 2.OG
    Seminarraum 6, Währinger Straße 29 1.OG
  • Friday 13.12. 13:15 - 14:45 Hörsaal 2, Währinger Straße 29 2.OG
  • Monday 16.12. 15:00 - 16:30 Hörsaal 2, Währinger Straße 29 2.OG
  • Friday 10.01. 13:15 - 14:45 Hörsaal 2, Währinger Straße 29 2.OG
  • Monday 13.01. 15:00 - 16:30 Hörsaal 2, Währinger Straße 29 2.OG
    Seminarraum 5, Währinger Straße 29 1.UG
  • Friday 17.01. 13:15 - 14:45 Hörsaal 2, Währinger Straße 29 2.OG
  • Friday 24.01. 13:15 - 14:45 Hörsaal 2, Währinger Straße 29 2.OG
  • Monday 27.01. 15:00 - 16:30 Hörsaal 2, Währinger Straße 29 2.OG
  • Friday 31.01. 13:15 - 14:45 Hörsaal 2, Währinger Straße 29 2.OG

Information

Aims, contents and method of the course

Goals:
Upon successful participation in the course, students will understand the fundamentals of machine learning and how to apply basic machine learning approaches/ideas in theory and practice.

Lecture Contents:
* What is Machine Learning?
* Basic Machine Learning pipelines
* Linear models for regression
* Linear models for classification
* Model validation and model selection
* Kernels
* Neural networks
* Dimensionality reduction
* Probabilistic modeling

Method:
Lecture + pen & paper exercises + programming exercises with presentations

Assessment and permitted materials

* Written exam: in the middle and at the end of the semester; you will be allowed to bring 2 handwritten A4 sheets (4 pages) of notes

* Programming assignments:
(a) solving machine learning-related programming assignments in Python at home; you will have to submit your executable source code & a written report on your implementation and results; all tasks must be solved and submitted individually
(b) you will have to present and discuss your implementation and results with your peers in two in-person sessions

* Pen & paper exercises: you will solve pen & paper exercises at home; to be awarded credits for your solutions you have to present your solutions in the pen & paper exercises sessions (you will be randomly selected)

Minimum requirements and assessment criteria

40% Written exam
30% Programming exercises
30% Pen & paper exercises

P = Average weighted percentage on the written exam, the programming exercises, and the pen & paper exercises

90% <= P <= 100% Sehr Gut (1)
77% <= P < 90% Gut (2)
62% <= P < 77% Befriedigend (3)
50% <= P < 62% Genügend (4)
0% <= P < 50% Nicht Genügend (5)

To successfully complete the course, you need to achieve
* at least 50% of the points on each of the written exams, AND
* at least 50% of the points on the pen & paper exercises, AND
* at least 50% of the points on the programming assignments and their presentation.

Attendance of the lecture parts of the course is voluntary but highly recommended. Attendance of the pen & paper exercise and the written exam is compulsory to pass the course.

Examination topics

The presented topics in the lecture (according to slides + exercises). Referenced Literature (as indicated in detail on the lecture slides).

Reading list

* Christopher Bishop, 2006, "Pattern Recognition and Machine Learning", Springer; available online: https://www.microsoft.com/en-us/research/publication/pattern-recognition-machine-learning/

* Trevor Hastie, Robert Tibshirani, Jerome Friedman, 2009, "The Elements of Statistical Learning: Data Mining, Inference, and Prediction", Springer; available online: https://web.stanford.edu/~hastie/ElemStatLearn/

* Tom Mitchell, 1997, "Machine Learning", McGraw Hill

* Shai Shalev-Shwartz and Shai Ben-David, 2014, "Understanding Machine Learning: From Theory to Algorithms", Cambridge University Press; available online: https://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/

Association in the course directory

Last modified: Th 28.11.2024 10:25