Universität Wien
Warning! The directory is not yet complete and will be amended until the beginning of the term.

053621 VU Mining Massive Data (2024S)

Continuous assessment of course work

Registration/Deregistration

Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).

Details

max. 25 participants
Language: English

Lecturers

Classes (iCal) - next class is marked with N

  • Friday 01.03. 09:45 - 11:15 Hörsaal 3, Währinger Straße 29 3.OG
    PC-Unterrichtsraum 6, Währinger Straße 29 2.OG
  • Monday 04.03. 09:45 - 11:15 Seminarraum 7, Währinger Straße 29 1.OG
  • Friday 08.03. 09:45 - 11:15 Hörsaal 3, Währinger Straße 29 3.OG
    PC-Unterrichtsraum 6, Währinger Straße 29 2.OG
  • Monday 11.03. 09:45 - 11:15 Seminarraum 7, Währinger Straße 29 1.OG
  • Friday 15.03. 09:45 - 11:15 Hörsaal 3, Währinger Straße 29 3.OG
    PC-Unterrichtsraum 6, Währinger Straße 29 2.OG
  • Monday 18.03. 09:45 - 11:15 Seminarraum 7, Währinger Straße 29 1.OG
  • Friday 22.03. 09:45 - 11:15 Hörsaal 3, Währinger Straße 29 3.OG
  • Monday 08.04. 09:45 - 11:15 Seminarraum 7, Währinger Straße 29 1.OG
  • Friday 12.04. 09:45 - 11:15 Hörsaal 3, Währinger Straße 29 3.OG
  • Monday 15.04. 09:45 - 11:15 Seminarraum 7, Währinger Straße 29 1.OG
  • Friday 19.04. 09:45 - 11:15 Hörsaal 3, Währinger Straße 29 3.OG
  • Monday 22.04. 09:45 - 11:15 Seminarraum 7, Währinger Straße 29 1.OG
  • Friday 26.04. 09:45 - 11:15 Hörsaal 3, Währinger Straße 29 3.OG
  • Monday 29.04. 09:45 - 11:15 Seminarraum 7, Währinger Straße 29 1.OG
  • Friday 03.05. 09:45 - 11:15 Hörsaal 3, Währinger Straße 29 3.OG
  • Monday 06.05. 09:45 - 11:15 Seminarraum 7, Währinger Straße 29 1.OG
  • Friday 10.05. 09:45 - 11:15 Hörsaal 3, Währinger Straße 29 3.OG
  • Monday 13.05. 09:45 - 11:15 Seminarraum 7, Währinger Straße 29 1.OG
  • Friday 17.05. 09:45 - 11:15 Hörsaal 3, Währinger Straße 29 3.OG
  • Friday 24.05. 09:45 - 11:15 Hörsaal 3, Währinger Straße 29 3.OG
  • Monday 27.05. 09:45 - 11:15 Seminarraum 7, Währinger Straße 29 1.OG
  • Friday 31.05. 09:45 - 11:15 Hörsaal 3, Währinger Straße 29 3.OG
  • Monday 03.06. 09:45 - 11:15 Seminarraum 7, Währinger Straße 29 1.OG
  • Friday 07.06. 09:45 - 11:15 Hörsaal 3, Währinger Straße 29 3.OG
  • Monday 10.06. 09:45 - 11:15 Seminarraum 7, Währinger Straße 29 1.OG
  • Friday 14.06. 09:45 - 11:15 Hörsaal 3, Währinger Straße 29 3.OG
  • Monday 17.06. 09:45 - 11:15 Seminarraum 7, Währinger Straße 29 1.OG
  • Friday 21.06. 09:45 - 11:15 Hörsaal 3, Währinger Straße 29 3.OG
  • Monday 24.06. 09:45 - 11:15 Seminarraum 7, Währinger Straße 29 1.OG
  • Friday 28.06. 09:45 - 11:15 Hörsaal 3, Währinger Straße 29 3.OG

Information

Aims, contents and method of the course

Goals:
Upon successful participation in the course, students will understand the principles of state-of-the-art techniques for learning from massive data. They can apply and evaluate those techniques in practical applications.

Lecture Contents:
* Dealing with large data (e.g., Map-Reduce)
* Fast nearest neighbor methods (e.g., Locality Sensitive Hashing)
* Scalable Supervised Learning, Online learning
* Active learning
* Clustering
* Interactive learning

Methods:
Lecture
+ pen & paper exercises (~bi-weekly assignments) and their discussion
+ programming exercises

Assessment and permitted materials

Written exam (at the end of the semester; 2xA4 sheets of hand-written notes can be used)

3 Programming assignments (submission of solutions in the form of source code and a written report)

6 Pen & paper exercises (some containing small programming tasks; ~bi-weekly; solved by students before the exercise sessions in which the students are randomly selected to present their solutions; discussion; attendance is mandatory)

Minimum requirements and assessment criteria

Students attending this course must have solid basic knowledge of statistics, algorithms, machine learning, and programming (i.e., appropriate university-level courses must have been taken and all prerequisites according to the curriculum must be met).

30% Written exam
35% Programming exercises
35% Pen & paper exercises (with small programming tasks)

P = Average percentage on the written exam, the programming exercises, and the pen & paper exercises

90% <= P Sehr Gut (1)
77% <= P < 90% Gut (2)
62% <= P < 77% Befriedigend (3)
50% <= P < 62% Genügend (4)
0% <= P < 50% Nicht Genügend (5)

At least 50% on the written exam, 50% on the programming exercises, and 50% on the pen & paper exercises must be achieved for a passing grade.

Attendance of the lecture parts of the course is voluntary but highly recommended. Attendance of the pen & paper exercises and the written exam is compulsory to pass the course.

Examination topics

The presented topics in the lecture (according to slides + exercises). Referenced Literature (as indicated in detail on lecture slides).

Reading list

Ester M., Sander J. Knowledge Discovery in Databases: Techniken und Anwendungen.
J. Leskovec, A. Rajaraman, J. Ullman. Mining of Massive Datasets.
J. Han, M. Kamber, J.Pei.Data Mining: Concepts and Techniques.
I. H. Witten , E. Frank, M. A. Hall. Data Mining: Practical Machine Learning Tools and Techniques.
+ papers mentioned lecture slides

Association in the course directory

Modul: MMD

Last modified: Fr 15.03.2024 13:05