Warning! The directory is not yet complete and will be amended until the beginning of the term.
080107 UE Course: Coding, Automating, and Visualizing Art History (2025S)
Continuous assessment of course work
Labels
Details
Language: English
Lecturers
Classes (iCal) - next class is marked with N
- N Wednesday 05.03. 15:30 - 17:00 Seminarraum 4 d. Inst. f. Kunstgeschichte (1. Stock) UniCampus Hof 9 3F-O1-27
- Wednesday 19.03. 15:30 - 17:00 Seminarraum 4 d. Inst. f. Kunstgeschichte (1. Stock) UniCampus Hof 9 3F-O1-27
- Wednesday 26.03. 15:30 - 17:00 Seminarraum 4 d. Inst. f. Kunstgeschichte (1. Stock) UniCampus Hof 9 3F-O1-27
- Wednesday 02.04. 15:30 - 17:00 Seminarraum 4 d. Inst. f. Kunstgeschichte (1. Stock) UniCampus Hof 9 3F-O1-27
- Wednesday 09.04. 15:30 - 17:00 Seminarraum 4 d. Inst. f. Kunstgeschichte (1. Stock) UniCampus Hof 9 3F-O1-27
- Wednesday 30.04. 15:30 - 17:00 Seminarraum 4 d. Inst. f. Kunstgeschichte (1. Stock) UniCampus Hof 9 3F-O1-27
- Wednesday 07.05. 15:30 - 17:00 Seminarraum 4 d. Inst. f. Kunstgeschichte (1. Stock) UniCampus Hof 9 3F-O1-27
- Wednesday 14.05. 15:30 - 17:00 Seminarraum 4 d. Inst. f. Kunstgeschichte (1. Stock) UniCampus Hof 9 3F-O1-27
- Wednesday 21.05. 15:30 - 17:00 Seminarraum 4 d. Inst. f. Kunstgeschichte (1. Stock) UniCampus Hof 9 3F-O1-27
- Wednesday 28.05. 15:30 - 17:00 Seminarraum 4 d. Inst. f. Kunstgeschichte (1. Stock) UniCampus Hof 9 3F-O1-27
- Wednesday 04.06. 15:30 - 17:00 Seminarraum 4 d. Inst. f. Kunstgeschichte (1. Stock) UniCampus Hof 9 3F-O1-27
- Wednesday 11.06. 15:30 - 17:00 Seminarraum 4 d. Inst. f. Kunstgeschichte (1. Stock) UniCampus Hof 9 3F-O1-27
- Wednesday 18.06. 15:30 - 17:00 Seminarraum 4 d. Inst. f. Kunstgeschichte (1. Stock) UniCampus Hof 9 3F-O1-27
- Wednesday 25.06. 15:30 - 17:00 Seminarraum 4 d. Inst. f. Kunstgeschichte (1. Stock) UniCampus Hof 9 3F-O1-27
Information
Aims, contents and method of the course
Assessment and permitted materials
Examination and Grading:
Assessment will be based on a series of coding assignments distributed throughout the semester (100%).
Assessment will be based on a series of coding assignments distributed throughout the semester (100%).
Minimum requirements and assessment criteria
Minimum requirement:
- Compulsory attendance. In the event of an absence due to illness or an exceptional family situation, written proof must be presented.
- All partial achievements must be completed in order to successfully complete the course.Assessment criteria:
90-100: Very Good (1)
80-89: Good (2)
70-79: Satisfactory (3)
60-69: Sufficient (4)
0-59: Failed (5)
- Compulsory attendance. In the event of an absence due to illness or an exceptional family situation, written proof must be presented.
- All partial achievements must be completed in order to successfully complete the course.Assessment criteria:
90-100: Very Good (1)
80-89: Good (2)
70-79: Satisfactory (3)
60-69: Sufficient (4)
0-59: Failed (5)
Examination topics
The examination material is the content of the course.
Reading list
Slides
Association in the course directory
Last modified: Tu 14.01.2025 11:05
The course will cover:
- Python
- Statistics
- Correlation & Regression
- Social Network Analysis
- Time Series Analysis
- Clustering
- Dimensionality Reduction· Language:
Course materials will be presented in English, but participants may choose to communicate with the instructor and complete assignments in either English or German.