Warning! The directory is not yet complete and will be amended until the beginning of the term.
136031 UE GenAI for Humanists (2025S)
Continuous assessment of course work
Labels
Details
max. 25 participants
Language: English
Lecturers
Classes (iCal) - next class is marked with N
- N Friday 07.03. 16:45 - 18:15 Seminarraum 6 Hauptgebäude, Tiefparterre Stiege 9 Hof 5
- Friday 14.03. 16:45 - 18:15 Seminarraum 6 Hauptgebäude, Tiefparterre Stiege 9 Hof 5
- Friday 21.03. 16:45 - 18:15 Seminarraum 6 Hauptgebäude, Tiefparterre Stiege 9 Hof 5
- Friday 28.03. 16:45 - 18:15 Seminarraum 6 Hauptgebäude, Tiefparterre Stiege 9 Hof 5
- Friday 04.04. 16:45 - 18:15 Seminarraum 6 Hauptgebäude, Tiefparterre Stiege 9 Hof 5
- Friday 11.04. 16:45 - 18:15 Seminarraum 6 Hauptgebäude, Tiefparterre Stiege 9 Hof 5
- Friday 02.05. 16:45 - 18:15 Seminarraum 6 Hauptgebäude, Tiefparterre Stiege 9 Hof 5
- Friday 09.05. 16:45 - 18:15 Seminarraum 6 Hauptgebäude, Tiefparterre Stiege 9 Hof 5
- Friday 16.05. 16:45 - 18:15 Seminarraum 6 Hauptgebäude, Tiefparterre Stiege 9 Hof 5
- Friday 23.05. 16:45 - 18:15 Seminarraum 6 Hauptgebäude, Tiefparterre Stiege 9 Hof 5
- Friday 30.05. 16:45 - 18:15 Seminarraum 6 Hauptgebäude, Tiefparterre Stiege 9 Hof 5
- Friday 06.06. 16:45 - 18:15 Seminarraum 6 Hauptgebäude, Tiefparterre Stiege 9 Hof 5
- Friday 13.06. 16:45 - 18:15 Seminarraum 6 Hauptgebäude, Tiefparterre Stiege 9 Hof 5
- Friday 20.06. 16:45 - 18:15 Seminarraum 6 Hauptgebäude, Tiefparterre Stiege 9 Hof 5
- Friday 27.06. 16:45 - 18:15 Seminarraum 6 Hauptgebäude, Tiefparterre Stiege 9 Hof 5
Information
Aims, contents and method of the course
Assessment and permitted materials
Evaluation will be mainly through individual and group hands-on assignments and a final capstone project. Participation in the class discussion and activities and an equivalent amount of extra-class dedication to the materials shall be enough to succeed in the course.
Minimum requirements and assessment criteria
Attendance is required; regular participation is the key to completing the course; all students must provide their computing environment; homework assignments must be submitted on time (some can be completed later as a part of the final project, but this must be discussed with the instructor whenever the issue arises); the final project must be submitted on time.
Examination topics
There is no examination for the course.
Reading list
The reading and video lists will be published on Moodle
Association in the course directory
DH Skills II; S-DH Cluster I; S-DH Cluster III; S-DH Cluster IV;
Last modified: Sa 18.01.2025 05:06
> Understanding Generative AI Concepts:
-- Provide a basic understanding of the Neural Networks Architecture underlying Sequence2Sequence and Generative Models
-- Provide a comprehensive understanding of generative AI concepts and tools, including generative models for text, images and speech data.
> Practical Skills Development:
-- Learn basics of Prompt Engineering
-- Use popular Python LLM frameworks like LangChain and LLamaIndex
-- Use Generative AI models using Open Source Models from Hugging Face and proprietary APIs like OpenAI ChatGPT.> Applications and Use Cases:
-- Explore real-world applications and use cases of generative AI across different industries, such as image synthesis, text generation, and sound processing.
> Ethical Considerations:
-- Discuss ethical considerations related to generative AI, including issues like bias, fairness, and responsible AI deployment.Content will cover, but will not be limited to: Social, Technical and Practical aspects of GenAI; LLMs and other Generative Models; LLMs and GenAI for Humanities; Prompt Engineering Techniques; Python Frameworks; Few-shots learning; Fine Tuning models; Using APIs; working with Images; working with speech data; working with tabular data, Large Action Models - Agents.