Warning! The directory is not yet complete and will be amended until the beginning of the term.
136040 VU Practical Machine Learning for Natural Language Processing (2021S)
Continuous assessment of course work
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
- Registration is open from Mo 01.02.2021 09:00 to Th 25.02.2021 23:59
- Deregistration possible until We 31.03.2021 23:59
Details
max. 25 participants
Language: German, English
Lecturers
Classes (iCal) - next class is marked with N
The lectures and tutorial sessions will be either pre-recorded or live (BigBlueButton or Zoom). You will find detailed access information for each session in the Moodle course (one day in advance for every session).
Tentative schedule:Dienstag 02.03.2021
[live, English/German] Course Intro; python basicsDonnerstag 04.03.2021
[live, English] Git basicsDienstag 09.03.2021
[live, English] Python objects; Unit testsDonnerstag 11.03.2021
[live, English] Tutorial SessionDienstag 16.03.2021
[live, English] More Python/tools (e.g., virtualenv)Donnerstag 18.03.2021
[live, English] Tutorial SessionDienstag 23.03.2021
[recorded, German] Lecture (Maschinelles Lernen; Sentiment-Analyse; Perzeptron)Donnerstag 25.03.2021
[live, German] Tutorial SessionDienstag 13.04.2021
[recorded, German] Lecture (Paraphrasen-Erkennung; NumPy; Scikit-Learn)Donnerstag 15.04.2021
[live, German] Tutorial SessionDienstag 20.04.2021
[recorded, German] Lecture (Paraphrase Recognition; Matrix Representations)Donnerstag 22.04.2021
[live, German] Tutorial SessionDienstag 27.04.2021
[recorded, German] LectureDonnerstag 29.04.2021
[live] Q&A: Programmier-Übung 02Dienstag 04.05.2021
[recorded, German] LectureDonnerstag 06.05.2021
[live] Q&A: Programmier-Übung 03Dienstag 11.05.2021
[recorded, German] LectureDienstag 18.05.2021
[recorded, German] LectureDonnerstag 20.05.2021
[live, German] Tutorial SessionDonnerstag 27.05.2021
[live, German] Tutorial SessionDienstag 01.06.2021
[recorded, German] LectureDienstag 08.06.2021
[recorded, German] LectureDonnerstag 10.06.2021
[live, German] Tutorial SessionDienstag 15.06.2021
[recorded, German] LectureDonnerstag 17.06.2021
[live, German] Tutorial SessionDienstag 22.06.2021
[recorded, German] LectureDonnerstag 24.06.2021
[live, German] Tutorial SessionDienstag 29.06.2021
[live] General Q&A
- Tuesday 02.03. 09:45 - 11:15 Digital
- Thursday 04.03. 11:30 - 13:00 Digital
- Tuesday 09.03. 09:45 - 11:15 Digital
- Thursday 11.03. 11:30 - 13:00 Digital
- Tuesday 16.03. 09:45 - 11:15 Digital
- Thursday 18.03. 11:30 - 13:00 Digital
- Tuesday 23.03. 09:45 - 11:15 Digital
- Thursday 25.03. 11:30 - 13:00 Digital
- Tuesday 13.04. 09:45 - 11:15 Digital
- Thursday 15.04. 11:30 - 13:00 Digital
- Tuesday 20.04. 09:45 - 11:15 Digital
- Thursday 22.04. 11:30 - 13:00 Digital
- Tuesday 27.04. 09:45 - 11:15 Digital
- Thursday 29.04. 11:30 - 13:00 Digital
- Tuesday 04.05. 09:45 - 11:15 Digital
- Thursday 06.05. 11:30 - 13:00 Digital
- Tuesday 11.05. 09:45 - 11:15 Digital
- Tuesday 18.05. 09:45 - 11:15 Digital
- Thursday 20.05. 11:30 - 13:00 Digital
- Thursday 27.05. 11:30 - 13:00 Digital
- Tuesday 01.06. 09:45 - 11:15 Digital
- Tuesday 08.06. 09:45 - 11:15 Digital
- Thursday 10.06. 11:30 - 13:00 Digital
- Tuesday 15.06. 09:45 - 11:15 Digital
- Thursday 17.06. 11:30 - 13:00 Digital
- Tuesday 22.06. 09:45 - 11:15 Digital
- Thursday 24.06. 11:30 - 13:00 Digital
- Tuesday 29.06. 09:45 - 11:15 Digital
Information
Aims, contents and method of the course
Assessment and permitted materials
Wird noch im Hinblick auf die Pandemie-Situation fesgelegt, z.B. regelmäßige Aufgaben während des Semesters und virtuelle mündliche Prüfung am Ende.
Minimum requirements and assessment criteria
Regelmäßige Bearbeitung von Aufgaben während des Semesters, und Erreichen einer Mindespunktezahl in einer Prüfung.
Examination topics
Kenntnisse über die in der Vorlesung behandelten Algorithmen und Machine-learning Verfahren, sowie deren in der Übung behandelten Anwendung und Implementierung.
Reading list
“Marc Pilgrim: Dive into Python”
https://diveintopython3.problemsolving.io/“Hal Daume: A course in machine learning”
Kapitel 4,5,7,10
http://ciml.info/“Goldberg & Levy: word2vec Explained: deriving Mikolov et al.'s negative-sampling word-embedding method”
https://arxiv.org/abs/1402.3722“Christopher Olah’s blog”
http://colah.github.io/“Goodfellow et al.: Deep Learning”
(advanced)
https://www.deeplearningbook.org/“Keras Developer Guides”
https://keras.io/guides/
https://diveintopython3.problemsolving.io/“Hal Daume: A course in machine learning”
Kapitel 4,5,7,10
http://ciml.info/“Goldberg & Levy: word2vec Explained: deriving Mikolov et al.'s negative-sampling word-embedding method”
https://arxiv.org/abs/1402.3722“Christopher Olah’s blog”
http://colah.github.io/“Goodfellow et al.: Deep Learning”
(advanced)
https://www.deeplearningbook.org/“Keras Developer Guides”
https://keras.io/guides/
Association in the course directory
S-DH (Cluster I: Language and Literature)
Last modified: Th 04.07.2024 00:13
Es werden Grundkenntnisse in Python oder die Bereitschaft, sich diese schnell anzueignen, vorausgesetzt (die grundlegenden Kontroll- und Datenstrukturen, wie z.B. Klassendefinitionen oder Dictionaries). Die Sprache der Vorlesung ist Deutsch bzw. Englisch (je nach Dozent*in).