Warning! The directory is not yet complete and will be amended until the beginning of the term.
180161 SE MEi:CogSci Journal Club (2024W)
Continuous assessment of course work
Labels
Preparation meeting: Tuesday October 1st, 2024, 13:30 - 16:30
HS 2i, NIG, Universitätsstrasse 7, 2nd floor
HS 2i, NIG, Universitätsstrasse 7, 2nd floor
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
- Registration is open from Su 15.09.2024 00:00 to Su 29.09.2024 23:59
- Deregistration possible until Th 31.10.2024 23:59
Details
max. 25 participants
Language: English
Lecturers
Classes
Location:
7T Seminarraum, MR center,
Lazarettgasse 14a (Bauteil 32)
Meeting point is at the reception of the building
21. 10. 2024
11. 11. 2024
18. 11. 2024
25. 11. 2024
02. 12. 2024
09. 12. 2024
16. 12. 2024
13. 01. 2025
20. 01. 2025
27. 01. 2025
Information
Aims, contents and method of the course
Assessment and permitted materials
- mandatory attendance
- 2 presentations of current publication (final grade: 40%)
- Participation in discussions (final grade: 40%)
- One written review of a publication (final grade: 20%)
- 2 presentations of current publication (final grade: 40%)
- Participation in discussions (final grade: 40%)
- One written review of a publication (final grade: 20%)
Minimum requirements and assessment criteria
Minimum requirement for a positive grade are participation in at least 80% of sessions (including proof that all papers were read) and presentation of a current publication (selected in accordance to the student's interest and overall course topic).Basis for grading will be classroom work 40% (active attendance, answering questions to literature, own good questions), 40% own presentations (2 well-prepared papers presented in front of the class), 20% of the final grade will be based on the quality of a written review of one publication.Generally student's attendance and deliverables are scored based on the level of understanding. Reading publications and remembering basic concepts are a must-be criterion. A profound analysis, critical appraisal, explanation of concepts derived from multiple publications and the ability to evaluate and use evidence to argue will lead to highest scores.Grades:
5 = <60%
4 = 60-69%
3 = 70%-79%
2 = 80%-89%
1 = 90%-100%
5 = <60%
4 = 60-69%
3 = 70%-79%
2 = 80%-89%
1 = 90%-100%
Examination topics
Preparation, presentation and discussion of current publications/literature in cognitive science
Reading list
Will be announced at the first meeting and partly chosen according to the interests of the participants.Articles will be updated during the seminar; Not all listed references will be discussed in class:Grosshagauer S, Woletz M, Vasileiadi M, Linhardt D, Nohava L, Schuler AL, Windischberger C, Williams N & Tik M. Chronometric TMS-fMRI of personalized left dorsolateral prefrontal target reveals state-dependency of subgenual anterior cingulate cortex effects. Mol Psychiatry. 2024 Mar 26.Vasileiadi, M., Schuler, A. L., Woletz, M., Linhardt, D., Windischberger, C., & Tik, M. (2023). Functional connectivity explains how neuronavigated TMS of posterior temporal subregions differentially affect language processing. Brain Stimulation, 16(4), 1062-1071.Tik, M., Woletz, M., Schuler, A. L., Vasileiadi, M., Cash, R. F. H., Zalesky, A., ... & Windischberger, C. (2023). Acute TMS/fMRI response explains offline TMS network effects–An interleaved TMS-fMRI study. NeuroImage, 267, 119833.Cash, R. F., Müller, V. I., Fitzgerald, P. B., Eickhoff, S. B., & Zalesky, A. (2023). Altered brain activity in unipolar depression unveiled using connectomics. Nature Mental Health, 1(3), 174-185.Tik, M., Hoffmann, A., Sladky, R., Tomova, L., Hummer, A., de Lara, L. N., ... & Windischberger, C. (2017). Towards understanding rTMS mechanism of action: stimulation of the DLPFC causes network-specific increase in functional connectivity. Neuroimage, 162, 289-296.Blumberger, D. M., Vila-Rodriguez, F., Thorpe, K. E., Feffer, K., Noda, Y., Giacobbe, P., ... & Downar, J. (2018). Effectiveness of theta burst versus high-frequency repetitive transcranial magnetic stimulation in patients with depression (THREE-D): a randomised non-inferiority trial. The Lancet, 391(10131), 1683-1692.Numssen, O., Zier, A. L., Thielscher, A., Hartwigsen, G., Knosche, T., & Weise, K. (2021). Efficient high-resolution TMS mapping of the human motor cortex by nonlinear regression. bioRxiv.Benedek, M., Jauk, E., Fink, A., Koschutnig, K., Reishofer, G., Ebner, F., & Neubauer, A. C. (2014). To create or to recall? Neural mechanisms underlying the generation of creative new ideas. NeuroImage, 88, 125-133.Cole, E., Gulser, M., Stimpson, K., Bentzley, B., Hawkins, J., Xiao, X., ... & Williams, N. (2019). Stanford accelerated intelligent neuromodulation therapy for treatment-resistant depression (SAINT-TRD). Brain Stimulation: Basic, Translational, and Clinical Research in Neuromodulation, 12(2), 402.Balderston, N. L., Beer, J. C., Seok, D., Makhoul, W., Deng, Z. D., Girelli, T., ... & Sheline, Y. I. (2022). Proof of concept study to develop a novel connectivity-based electric-field modelling approach for individualized targeting of transcranial magnetic stimulation treatment. Neuropsychopharmacology, 47(2), 588-598.
Association in the course directory
Last modified: Sa 02.11.2024 19:46
The journal club will include discussion of current research questions in cognitive science on the basis of primary literature and selection of important current publications in the field of cognitive science as well as presentation and discussion in the course of the journal club. In addition, participants will take part in lab visits which will include demonstrations and hands-on experience with the neuroimaging methods discussed during the course.Learning Outcomes:
- Deeper understanding of current approaches in cognitive science and their influence on the field.
- Basic understanding of the principles of neuroscience methods (fMRI, TMS) and critical awareness of their limitations
- Ability to follow scientific developments in the field of cognitive science in a reflective manner
- Ability to interpret and evaluate results of primary scientific literature at an advanced level
- Ability to choose autonomously and give a condensed account on primary scientific literature
- Ability to communicate one's expertise in order to contribute constructive criticism in the context of scientific debate
- Ability to moderate discussion on current topics in cognitive science
- Ability to deal with different points of view in an intercultural context