Universität Wien

210025 UE BAK 4 Quantitative Methods of Empirical Social Research (2022W)

(engl.)

6.00 ECTS (2.00 SWS), SPL 21 - Politikwissenschaft
Continuous assessment of course work
ON-SITE

Eine Anmeldung über u:space innerhalb der Anmeldephase ist erforderlich! Eine nachträgliche Anmeldung ist NICHT möglich.
Studierende, die der ersten Einheit unentschuldigt fernbleiben, verlieren ihren Platz in der Lehrveranstaltung.

Achten Sie auf die Einhaltung der Standards guter wissenschaftlicher Praxis und die korrekte Anwendung der Techniken wissenschaftlichen Arbeitens und Schreibens.
Plagiierte und erschlichene Teilleistungen führen zur Nichtbewertung der Lehrveranstaltung (Eintragung eines 'X' im Sammelzeugnis).
Die Lehrveranstaltungsleitung kann Studierende zu einem notenrelevanten Gespräch über erbrachte Teilleistungen einladen.

Registration/Deregistration

Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).

Details

max. 35 participants
Language: English

Lecturers

Classes (iCal) - next class is marked with N

  • Wednesday 05.10. 09:45 - 11:15 Seminarraum 6 UniCampus Hof 7 Eingang 7.1 OG01 2H-O1-33
  • Wednesday 12.10. 09:45 - 11:15 Seminarraum 6 UniCampus Hof 7 Eingang 7.1 OG01 2H-O1-33
  • Wednesday 19.10. 09:45 - 11:15 Seminarraum 6 UniCampus Hof 7 Eingang 7.1 OG01 2H-O1-33
  • Wednesday 09.11. 09:45 - 11:15 Seminarraum 6 UniCampus Hof 7 Eingang 7.1 OG01 2H-O1-33
  • Wednesday 16.11. 09:45 - 11:15 Seminarraum 6 UniCampus Hof 7 Eingang 7.1 OG01 2H-O1-33
  • Wednesday 23.11. 09:45 - 11:15 Seminarraum 6 UniCampus Hof 7 Eingang 7.1 OG01 2H-O1-33
  • Wednesday 30.11. 09:45 - 11:15 Seminarraum 6 UniCampus Hof 7 Eingang 7.1 OG01 2H-O1-33
  • Wednesday 07.12. 09:45 - 11:15 Seminarraum 6 UniCampus Hof 7 Eingang 7.1 OG01 2H-O1-33
  • Wednesday 14.12. 09:45 - 11:15 Seminarraum 6 UniCampus Hof 7 Eingang 7.1 OG01 2H-O1-33
  • Wednesday 11.01. 09:45 - 11:15 Seminarraum 6 UniCampus Hof 7 Eingang 7.1 OG01 2H-O1-33
  • Wednesday 18.01. 09:45 - 11:15 Seminarraum 6 UniCampus Hof 7 Eingang 7.1 OG01 2H-O1-33
  • Wednesday 25.01. 09:45 - 11:15 Seminarraum 6 UniCampus Hof 7 Eingang 7.1 OG01 2H-O1-33

Information

Aims, contents and method of the course

This course is complementary to the course “210014 VO BAK 4 Quantitative methods in the empirical social sciences (2022W)” taught by Professor Markus Wagner.

The aim of the course is to equip students with the basic applied skills for easy data projects. The content of the course includes basic descriptive and inferential statistics, as well as the graphic representation of results. The core focus of this course will be hands-on and practical.

Students are expected to attend the 210014 VO lecture component, which will cover theoretical concepts and more abstract ideas.

Students will learn the basic “tools” to conduct quantitative data analysis using the programming language R. By the end of the course, students should be able to describe and manipulate a dataset and conduct basic inferential analyses.

Assessment and permitted materials

The final assessment will be based on the following components:

(1) Participation (10% of final grade, maximum 2 classes can be missed)

(2) Three homework assignments (25% of final grade) based on materials in the course texts. Students are encouraged to form study groups but assignments must be completed individually.

(3) A mid-term exam before Christmas (25% of final grade). The test will concern theoretical questions and/or interpretation of R output. Duration: max 45 minutes.

(4) Final assignment (40% of final grade). At the end of the course, you will be required to write a final paper of 2000-2500 words, focusing mostly on methods with applications in R. Joint work is NOT allowed for the final assignment.

Minimum requirements and assessment criteria

In order to complete the course with a positive grade students have to attempt all seminar parts.

Students are allowed to miss two classes. The software turnitin will be used to check plagiarism

90-100 = 1. Excellent
80-89 = 2. Good
70-79 = 3. Satisfactory
60-69 = 4. Sufficient
< 60 = 5. Fail

Examination topics

The examination will focus on different statistical concepts covered in class and will include basic data analysis using the programming language R. Detailed instructions about the homework assignments and the final assignment will be posted on Moodle in due time.

The final paper is due on February 15th 2023.

Reading list


Association in the course directory

Last modified: Th 14.11.2024 00:15