Warning! The directory is not yet complete and will be amended until the beginning of the term.
250002 VO Financial mathematics (2011S)
Labels
Details
Language: English
Examination dates
- Wednesday 22.06.2011
- Friday 22.07.2011
- Monday 01.08.2011
- Tuesday 25.10.2011
- Wednesday 29.02.2012
- Thursday 29.03.2012
- Monday 12.11.2012
Lecturers
Classes (iCal) - next class is marked with N
- Wednesday 09.03. 15:00 - 17:00 Seminarraum
- Thursday 10.03. 15:00 - 16:00 Seminarraum
- Wednesday 16.03. 15:00 - 17:00 Seminarraum
- Thursday 17.03. 15:00 - 16:00 Seminarraum
- Wednesday 23.03. 15:00 - 17:00 Seminarraum
- Thursday 24.03. 15:00 - 16:00 Seminarraum
- Wednesday 30.03. 15:00 - 17:00 Seminarraum
- Thursday 31.03. 15:00 - 16:00 Seminarraum
- Wednesday 06.04. 15:00 - 17:00 Seminarraum
- Thursday 07.04. 15:00 - 16:00 Seminarraum
- Wednesday 13.04. 15:00 - 17:00 Seminarraum
- Thursday 14.04. 15:00 - 16:00 Seminarraum
- Wednesday 04.05. 15:00 - 17:00 Seminarraum
- Thursday 05.05. 15:00 - 16:00 Seminarraum
- Wednesday 11.05. 15:00 - 17:00 Seminarraum
- Thursday 12.05. 15:00 - 16:00 Seminarraum
- Wednesday 18.05. 15:00 - 17:00 Seminarraum
- Thursday 19.05. 15:00 - 16:00 Seminarraum
- Wednesday 25.05. 15:00 - 17:00 Seminarraum
- Thursday 26.05. 15:00 - 16:00 Seminarraum
- Wednesday 01.06. 15:00 - 17:00 Seminarraum
- Wednesday 08.06. 15:00 - 17:00 Seminarraum
- Thursday 09.06. 15:00 - 16:00 Seminarraum
- Wednesday 15.06. 15:00 - 17:00 Seminarraum
- Thursday 16.06. 15:00 - 16:00 Seminarraum
- Wednesday 22.06. 15:00 - 17:00 Seminarraum
- Wednesday 29.06. 15:00 - 17:00 Seminarraum
- Thursday 30.06. 15:00 - 16:00 Seminarraum
Information
Aims, contents and method of the course
The lecture on Financial Mathematics: Continuous-Time Models, gives an introduction to modern tools in financial mathematics. Based on the introductory lecture on probability theory, namely the lecture "Wahrscheinlichkeitstheorie und Statistik", the Brownian motion as the essential stochastic process for continuous modeling of financial assets, is introduced. Basic knowledge on stochastic calculus, such that the stochastic integral with respect to the Brownian motion and Itô's formula, will be provided as well. The famous Black-Scholes model for the stock price will be introduced and the Black-Scholes formula for option prices will be discussed in detail. We will also discuss various sensitivity parameters of the prices, namely the so-called Greeks. Further we will touch on different aspects of asset pricing, such that risk-neutral measures, the fundamental theorem of option prices, a connection to partial differential equations, or exotic options.
Assessment and permitted materials
Minimum requirements and assessment criteria
Examination topics
Reading list
Association in the course directory
MSTV, MAMV
Last modified: Mo 07.09.2020 15:40