Universität Wien
Warning! The directory is not yet complete and will be amended until the beginning of the term.

250004 VO Group theory (2009S)

6.00 ECTS (4.00 SWS), SPL 25 - Mathematik

Details

Language: German

Examination dates

Lecturers

Classes (iCal) - next class is marked with N

  • Tuesday 03.03. 13:00 - 15:00 Seminarraum
  • Monday 09.03. 13:00 - 15:00 Seminarraum
  • Tuesday 10.03. 13:00 - 15:00 Seminarraum
  • Monday 16.03. 13:00 - 15:00 Seminarraum
  • Tuesday 17.03. 13:00 - 15:00 Seminarraum
  • Monday 23.03. 13:00 - 15:00 Seminarraum
  • Tuesday 24.03. 13:00 - 15:00 Seminarraum
  • Monday 30.03. 13:00 - 15:00 Seminarraum
  • Tuesday 31.03. 13:00 - 15:00 Seminarraum
  • Monday 20.04. 13:00 - 15:00 Seminarraum
  • Tuesday 21.04. 13:00 - 15:00 Seminarraum
  • Monday 27.04. 13:00 - 15:00 Seminarraum
  • Tuesday 28.04. 13:00 - 15:00 Seminarraum
  • Monday 04.05. 13:00 - 15:00 Seminarraum
  • Tuesday 05.05. 13:00 - 15:00 Seminarraum
  • Monday 11.05. 13:00 - 15:00 Seminarraum
  • Tuesday 12.05. 13:00 - 15:00 Seminarraum
  • Monday 18.05. 13:00 - 15:00 Seminarraum
  • Tuesday 19.05. 13:00 - 15:00 Seminarraum
  • Monday 25.05. 13:00 - 15:00 Seminarraum
  • Tuesday 26.05. 13:00 - 15:00 Seminarraum
  • Monday 08.06. 13:00 - 15:00 Seminarraum
  • Tuesday 09.06. 13:00 - 15:00 Seminarraum
  • Monday 15.06. 13:00 - 15:00 Seminarraum
  • Tuesday 16.06. 13:00 - 15:00 Seminarraum
  • Monday 22.06. 13:00 - 15:00 Seminarraum
  • Tuesday 23.06. 13:00 - 15:00 Seminarraum
  • Monday 29.06. 13:00 - 15:00 Seminarraum
  • Tuesday 30.06. 13:00 - 15:00 Seminarraum

Information

Aims, contents and method of the course

Groups arise in the context of symmetries of all kinds.
The origin of modern group theory is, among other things, the
classification of crystals (Schönflies, Fedorov), solving algebraic
equations (Galois), solving differential equations (Lie) and
representations (Frobenius).
Group theory is also esential in physics, in particular for the
description of phenomena relying on symmetry.
This lecture gives an introduction to modern group theory,
covering the usual material, ranging from subgroups, cosets,
quotients, homomorphisms, over semidirect products, automorphisms,
extensions and Sylow theorems, to solvable and nilpotent groups.
Also free groups and presentations should be treated, as well as
Coxeter groups.

Assessment and permitted materials

Written or oral examination after the end of the lecture.

Minimum requirements and assessment criteria

Examination topics

Reading list

[BOG] Bogopolski, O. Introduction to group theory. European Mathematical
Society (EMS), Zürich, 2008.
[HUP] Huppert, B. Endliche Gruppen. Band 134, Springer-Verlag, 1967.
[ROB] Robinson, Derek J. S., A Course in the Theory of Groups, Springer-Verlag, 1995.
[ROT] Rotman, Joseph J, An introduction to the theory of groups. Springer-Verlag, 1995.
[ZAS] Zassenhaus, Hans J. The theory of groups. Reprint of the 1958 edition,
Dover Publications 1999.

Association in the course directory

MALG

Last modified: Mo 07.09.2020 15:40