Warning! The directory is not yet complete and will be amended until the beginning of the term.
250004 VO Algebra (2013W)
Labels
Details
Language: German
Examination dates
- Wednesday 12.02.2014
- Wednesday 19.02.2014
- Monday 24.02.2014
- Monday 03.03.2014
- Monday 05.05.2014
- Tuesday 22.07.2014
- Wednesday 06.08.2014
- Tuesday 19.08.2014
- Tuesday 26.08.2014
- Tuesday 02.09.2014
- Tuesday 30.09.2014
- Tuesday 14.10.2014
- Tuesday 10.02.2015
- Wednesday 18.02.2015
- Thursday 03.09.2015
- Tuesday 29.09.2015
- Wednesday 07.10.2015
- Wednesday 25.11.2015
Lecturers
Classes (iCal) - next class is marked with N
- Wednesday 02.10. 10:00 - 12:00 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Thursday 03.10. 10:00 - 12:00 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 09.10. 10:00 - 12:00 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Thursday 10.10. 10:00 - 12:00 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 16.10. 10:00 - 12:00 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Thursday 17.10. 10:00 - 12:00 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 23.10. 10:00 - 12:00 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Thursday 24.10. 10:00 - 12:00 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 30.10. 10:00 - 12:00 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Thursday 31.10. 10:00 - 12:00 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 06.11. 10:00 - 12:00 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Thursday 07.11. 10:00 - 12:00 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 13.11. 10:00 - 12:00 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Thursday 14.11. 10:00 - 12:00 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 20.11. 10:00 - 12:00 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Thursday 21.11. 10:00 - 12:00 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 27.11. 10:00 - 12:00 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Thursday 28.11. 10:00 - 12:00 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 04.12. 10:00 - 12:00 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Thursday 05.12. 10:00 - 12:00 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 11.12. 10:00 - 12:00 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Thursday 12.12. 10:00 - 12:00 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 18.12. 10:00 - 12:00 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 08.01. 10:00 - 12:00 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Thursday 09.01. 10:00 - 12:00 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 15.01. 10:00 - 12:00 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Thursday 16.01. 10:00 - 12:00 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 22.01. 10:00 - 12:00 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Thursday 23.01. 10:00 - 12:00 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 29.01. 10:00 - 12:00 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Thursday 30.01. 10:00 - 12:00 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
Information
Aims, contents and method of the course
Assessment and permitted materials
Written or oral exam after the end of the semester.
Minimum requirements and assessment criteria
We will give an introduction to the basic ideas and results of abstract algebra.
Examination topics
The material will be presented by the lecturer.
Reading list
G. Fischer, Lehrbuch der Algebra
T.W. Hungerford, Algebra
J.C. Jantzen, J. Schwermer, Algebra
S. Lang, Algebra
T.W. Hungerford, Algebra
J.C. Jantzen, J. Schwermer, Algebra
S. Lang, Algebra
Association in the course directory
ALG
Last modified: Mo 07.09.2020 15:40
We will cover the following topics in group theory: composition series and the Jordan-Hölder Theorem, actions of groups on sets, Sylow theorems.
We will cover the following objects and their properties pertaining to module theory: submodules and quotients, homomorphism theorem, internal and external direct sum, generators, free modules, rings of endomorphisms.
We will cover the following objects and their properties pertaining to field theory: finite subgroups of the multiplicative group, integral and algebraic elements, norm and trace, normal and separable finite field extensions, Fundamental Theorem of Galois Theory, solvability of algebraic equations by radicals, finite fields.
For more information (in German) go to http://www.mat.univie.ac.at/~baxa/ws1314.html