Warning! The directory is not yet complete and will be amended until the beginning of the term.
250005 VO Selected topics in differential equations (2009S)
Labels
Details
Language: English
Lecturers
Classes (iCal) - next class is marked with N
- Wednesday 04.03. 09:00 - 10:00 Seminarraum
- Thursday 05.03. 09:00 - 10:00 Seminarraum
- Wednesday 11.03. 09:00 - 10:00 Seminarraum
- Wednesday 18.03. 09:00 - 10:00 Seminarraum
- Thursday 19.03. 09:00 - 10:00 Seminarraum
- Wednesday 25.03. 09:00 - 10:00 Seminarraum
- Thursday 26.03. 09:00 - 10:00 Seminarraum
- Wednesday 01.04. 09:00 - 10:00 Seminarraum
- Thursday 02.04. 09:00 - 10:00 Seminarraum
- Wednesday 22.04. 09:00 - 10:00 Seminarraum
- Thursday 23.04. 09:00 - 10:00 Seminarraum
- Wednesday 29.04. 09:00 - 10:00 Seminarraum
- Thursday 30.04. 09:00 - 10:00 Seminarraum
- Wednesday 06.05. 09:00 - 10:00 Seminarraum
- Thursday 07.05. 09:00 - 10:00 Seminarraum
- Wednesday 13.05. 09:00 - 10:00 Seminarraum
- Thursday 14.05. 09:00 - 10:00 Seminarraum
- Wednesday 20.05. 09:00 - 10:00 Seminarraum
- Wednesday 27.05. 09:00 - 10:00 Seminarraum
- Thursday 28.05. 09:00 - 10:00 Seminarraum
- Wednesday 03.06. 09:00 - 10:00 Seminarraum
- Thursday 04.06. 09:00 - 10:00 Seminarraum
- Wednesday 10.06. 09:00 - 10:00 Seminarraum
- Wednesday 17.06. 09:00 - 10:00 Seminarraum
- Thursday 18.06. 09:00 - 10:00 Seminarraum
- Wednesday 24.06. 09:00 - 10:00 Seminarraum
- Thursday 25.06. 09:00 - 10:00 Seminarraum
Information
Aims, contents and method of the course
This is a continuation of the first semester course. We will discuss the basic theory of small amplitude water waves (linear and nonlinear aspects) and will also cover some special topics (wave breaking, motion beneath the surface, vorticity effects, solitons, tsunamis).
Assessment and permitted materials
take-home exam.
Minimum requirements and assessment criteria
A basic understanding of free surface water waves, ranging from linear theory to nonlinear aspects.
Examination topics
An interplay of methods from various branches of pure mathematics (e.g. topology, complex analysis, functional analysis, differential equations, differential geometry, partial differential equations) and applied mathematics (e.g. multiple scales, non-dimensionalisation) will be used.
Reading list
In addition to lecture notes that will be regularly provided, we recommand the following books
1. R. Johnson, A modern introduction to the mathematical theory of water
waves, Cambridge University Press, Cambridge, 1997.
2. P. Drazin and R. Johnson, Solitons: an introduction, Cambridge University Press, Cambridge, 1989.
3. A. Majda and A. Bertozzi, Vorticity and incompressible flow, Cambridge University Press, Cambridge, 2002.
1. R. Johnson, A modern introduction to the mathematical theory of water
waves, Cambridge University Press, Cambridge, 1997.
2. P. Drazin and R. Johnson, Solitons: an introduction, Cambridge University Press, Cambridge, 1989.
3. A. Majda and A. Bertozzi, Vorticity and incompressible flow, Cambridge University Press, Cambridge, 2002.
Association in the course directory
MANV
Last modified: Mo 07.09.2020 15:40